NATure CHeMiSTry
Articles
16. Wappes, E. A., Nakafuku, K. M. & Nagib, D. A. Directed β C–H amination
of alcohols via radical relay chaperones. J. Am. Chem. Soc. 139,
10204–10207 (2017).
β-benzamide 61. This amide may then be oxidized by RuCl3/NaIO4
to α-amino acid 62. Conversely, instead of an acidic work-up, dou-
ble reduction by iBu2AlH at 0°C yielded Bn-protected β-amine 63,
and C–O displacement by silyl halides (Me3Si–X) afforded vicinal
benzamide halides (64–66). Importantly, in each of these oxazoline
derivatizations, the stereocentre was retained with greater than 98%
e.s. Lastly, applying this method to streamlined access of privileged
catalyst architectures, oxazoline may be selectively deprotonated
17. Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H
functionalization via selective hydrogen atom transfer. Synthesis 50,
1569–1586 (2018).
18. Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic
alkylation of remote C–H bonds enabled by proton-coupled electron transfer.
Nature 539, 268–271 (2016).
19. Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed
C–C bond formation at unactivated sp3 C–H bonds. Nature 539,
272–275 (2016).
n
with BuLi, then quenched with Ph2PCl, to afford phosphinooxa-
zoline ligand49. Alternatively, the bis-imidate 67 of a meta-diol was
converted to inverted bisoxazoline 68 (66% yield; 98% e.e.; 15:1
d.r.), providing rapid access to a new C2 symmetric ligand class.
20. Twilton, J. et al. Te merger of transition metal and photocatalysis. Nat. Rev.
Chem. 1, 0052 (2017).
21. Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric
radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).
22. Hossain, A., Bhattacharyya, A. & Reiser, O. Copper’s rapid ascent in
visible-light photoredox catalysis. Science 364, eaav9713 (2019).
23. Ager, D. J., Prakash, I. & Schaad, D. R. 1,2-Amino alcohols and their
heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem.
Rev. 96, 835–875 (1996).
Conclusions
In summary, we expect that this enantio- and regioselective, radical
β-C–H amination will streamline the synthesis of important mol-
ecules with the chiral, vicinal amino alcohol motif. Notably, this
approach bypasses the use of chiral auxiliaries (imines) and chiral
pool precursors (amino acids) and enables the enantioselective syn-
thesis of several new β-amino alcohols. Moreover, this radical relay
chaperone strategy will also enable the development of other classes
of stereoselective C–H functionalization.
24. Robak, M. T., Herbage, M. A. & Ellman, J. A. Synthesis and applications of
tert-butanesulfnamide. Chem. Rev. 110, 3600–3740 (2010).
25. Chang, H. T. & Sharpless, K. B. A practical route to enantiopure
1,2-aminoalcohols. Tetrahedron Lett. 37, 3219–3222 (1996).
26. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via
copper-catalyzed radical relay. Science 353, 1014–1018 (2016).
27. Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. & Melchiorre, P. Asymmetric
catalytic formation of quaternary carbons by iminium ion trapping of
radicals. Nature 532, 218–222 (2016).
Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
28. Wang, C., Harms, K. & Meggers, E. Catalytic asymmetric Csp3−H
functionalization under photoredox conditions by radical translocation
and stereocontrolled alkene addition. Angew. Chem. Int. Ed. 55,
13495–13498 (2016).
Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).
30. Zhang, W., Wu, L., Chen, P. & Liu, G. Enantioselective arylation of benzylic
Received: 7 November 2019; Accepted: 4 May 2020;
Published: xx xx xxxx
C−H bonds by copper-catalyzed radical relay. Angew. Chem. Int. Ed. 58,
6425–6429 (2019).
31. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven
deracemization enabled by excited-state electron transfer. Science 366,
References
364–369 (2019).
1. Roughley, S. D. & Jordan, A. M. Te medicinal chemist’s toolbox: an analysis
32. Li, J. et al. Site-specifc allylic C–H bond functionalization with a
of reactions used in the pursuit of drug candidates. J. Med. Chem. 54,
copper-bound N-centred radical. Nature 574, 516–521 (2019).
3451–3479 (2011).
33. Ni, Z. et al. Highly regioselective copper-catalyzed benzylic C–H
2. Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination:
amination by N-fuorobenzenesulfonimide. Angew. Chem. Int. Ed. 51,
scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).
1244–1247 (2012).
3. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal
34. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies
carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).
(CRC Press, 2007).
4. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene
35. Griller, D., Ingold, K. U., Krusic, P. J. & Fischer, H. Confguration of the
C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).
tert-butyl radical. J. Am. Chem. Soc. 100, 6750–6752 (1978).
5. Paudyal, M. P. et al. Dirhodium-catalyzed C–H arene amination using
36. Nakafuku, K. M., Fosu, S. C. & Nagib, D. A. Catalytic alkene
hydroxylamines. Science 353, 1144–1147 (2016).
difunctionalization via imidate radicals. J. Am. Chem. Soc. 140,
11202–11205 (2018).
6. Rufoni, A. et al. Practical and regioselective amination of arenes using alkyl
amines. Nat. Chem. 11, 426–433 (2019).
37. Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. &
MacMillan, D. W. C. Photosensitized, energy transfer-mediated
organometallic catalysis through electronically excited nickel(ii). Science 355,
380–385 (2017).
7. McNally, A., Hafemayer, B., Collins, B. S. L. & Gaunt, M. J.
Palladium-catalysed C–H activation of aliphatic amines to give strained
nitrogen heterocycles. Nature 510, 129–133 (2014).
8. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds
suitable for late-stage functionalization. Nature 517, 600–604 (2015).
9. Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled
by tailored iridium catalysts. Science 359, 1016–1021 (2018).
10. Reddy, R. P. & Davies, H. M. L. Dirhodium tetracarboxylates derived from
adamantylglycine as chiral catalysts for enantioselective C–H aminations.
Org. Lett. 8, 5013–5016 (2006).
38. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C.
Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering
a general manifold for stereoconvergence in nickel-catalyzed cross-couplings.
J. Am. Chem. Soc. 137, 4896–4899 (2015).
39. Kochi, J. K. Electron-transfer mechanisms for organometallic intermediates in
catalytic reactions. Acc. Chem. Res. 7, 351–360 (1974).
40. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings
induced by visible light. Science 351, 681–684 (2016).
11. Zalatan, D. N. & Du Bois, J. A chiral rhodium carboxamidate
catalyst for enantioselective C–H amination. J. Am. Chem. Soc. 130,
9220–9221 (2008).
12. Milczek, E., Boudet, N. & Blakey, S. Enantioselective C–H amination
using cationic ruthenium(ii)–pybox catalysts. Angew. Chem. Int. Ed. 47,
6825–6828 (2008).
41. Farney, E. P. et al. Discovery and elucidation of counteranion dependence in
photoredox catalysis. J. Am. Chem. Soc. 141, 6385–6391 (2019).
42. Strieth-Kalthof, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy
transfer catalysis mediated by visible light: principles, applications, directions.
Chem. Soc. Rev. 47, 7190–7202 (2018).
13. Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H
amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2,
219–227 (2019).
43. Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A. & Yoon, T. P.
Enantioselective photochemistry through Lewis acid-catalyzed triplet energy
transfer. Science 354, 1391–1395 (2016).
14. Hu, Y. et al. Enantioselective radical construction of 5-membered cyclic
sulfonamides by metalloradical C–H amination. J. Am. Chem. Soc. 141,
18160–18169 (2019).
44. Wang, Y.-F., Chen, H., Zhu, X. & Chiba, S. Copper-catalyzed aerobic aliphatic
C–H oxygenation directed by an amidine moiety. J. Am. Chem. Soc. 134,
11980–11983 (2012).
15. Yang, Y., Cho, I., Qi, X., Liu, P. & Arnold, F. H. An enzymatic platform for
the asymmetric amination of primary, secondary and tertiary C(sp3)–H
bonds. Nat. Chem. 11, 987–993 (2019).
45. Alderson, J. M., Corbin, J. R. & Schomaker, J. M. Tunable, chemo- and
site-selective nitrene transfer reactions through the rational design of silver(i)
catalysts. Acc. Chem. Res. 50, 2147–2158 (2017).