C O M M U N I C A T I O N S
Table 1. Diastereoselective Preparation of Homoallylic Alcohols of
Type 3 Using Allylic Zinc Reagents of Type 1
In conclusion, we have described a convenient method for
preparing new allylic zinc chlorides using a LiCl-mediated zinc
dust insertion to allylic chlorides. These add with remarkable
diastereoselectivity and regioselectivity to various aldehydes or
ketones, affording homoallylic alcohols bearing quaternary centers.
Extensions of this work are currently underway in our laboratories.
Acknowledgment. We thank the Fonds der Chemischen In-
dustrie, the DFG, Merck Research Laboratories (MSD), Chemetall
GmbH (Frankfurt), and BASF AG (Ludwigshafen) for financial
support.
Supporting Information Available: Experimental procedures and
spectral data for all new compounds are provided. This material is
References
(1) (a) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37,
388. (b) Christoffers, J.; Mann, A. Angew. Chem., Int. Ed. 2001, 40, 4591.
(c) d’Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005,
44, 1376. (d) Sklute, G.; Amsallem, D.; Shabli, A.; Varghese, J. P.; Marek,
I. J. Am. Soc. Chem. 2003, 125, 11776. (e) Sklute, G.; Marek, I. J. Am.
Soc. Chem. 2006, 128, 4642. (f) Breit, B.; Demel, P.; Studte, C. Angew.
Chem., Int. Ed. 2004, 43, 3785. (g) Li, H.; Walsh, P. J. J. Am. Soc. Chem.
2004, 126, 6538. (h) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc.
2002, 124, 898. (i) Denmark, S. E.; Fu, J. J. Am. Chem. Soc. 2001, 123,
9488. (j) Denmark, S. E.; Fu, J. Org. Lett. 2002, 4, 1951. (k) Heo, J.-N.;
Micalizio, G. C.; Roush, W. R. Org. Lett. 2003, 5, 1693.
(2) For allylmetal additions, see: (a) Chemler, S. R.; Roush, W. R. In Modern
Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany,
2000; Chapter 10. (b) Denmark, S. E.; Almstead, N. G. In Modern
Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany,
2000; Chapter 11. (c) StereoselectiVe Synthesis, Methods of Organic
Chemistry (Houben-Weyl), E21 ed.; Helmchen, G., Hoffmann, R., Mulzer,
J., Schaumann, E., Eds.; Thieme: Stuttgart, 1996; Vol. 3. (d) Yasuda,
M.; Hirata, K.; Nishino, M.; Yamamoto, A.; Baba, A. J. Am. Chem. Soc.
2002, 124, 13442. (e) Thadani, A. N.; Batey, R. A. Org. Lett. 2002, 4,
3827. (f) Li, S. W.; Batey, R. A. Chem. Commun. 2004, 1382. (g) Buse,
C. T.; Heathcock, C. H. Tetrahedron Lett. 1978, 1865. (h) Yamamoto,
Y.; Yatagai, H.; Naruta, Y.; Maruyama, K. J. Am. Chem. Soc. 1980, 102,
7107.
(3) (a) Czernecki, S.; Georgoulis, C. Bull. Soc. Chim. Fr. 1968, 3713. (b)
Courtois, G.; Miginiac, L. J. Organomet. Chem. 1974, 69, 1. (c)
Yamamoto, Y. Acc. Chem. ReV. 1987, 20, 243. (d) Yamamoto, Y.; Asao,
N. Chem. ReV. 1993, 93, 2207. (e) Schlosser, M.; Desponds, O.; Lehmann,
R.; Moret, E.; Rauchschwalbe, G. Tetrahedron 1993, 49, 10175. (f)
Marshall, J. A. Chem. ReV. 2000, 100, 3163. (g) Denmark, S. E.; Fu, J.
Chem. ReV. 2003, 103, 2763. (h) Chabaud, L.; James, P.; Landais, Y.
Eur. J. Org. Chem. 2004, 3173. (i) Lipshutz, B. H.; Hackmann, C. J.
Org. Chem. 1994, 59, 7437. (j) Fu¨stner, A.; Voigtla¨nder, D. Synthesis
2000, 975. (k) Roush, W. R. In ComprehensiVe Organic Synthesis; Trost,
B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon: Oxford, 1991;
Vol. 2, pp 1-53. (l) Kim, J. G.; Camp, E. H.; Walsh, P. J. Org. Lett.
2006, 8, 4413.
(4) (a) Gaudemar, M. Bull. Soc. Chim. Fr. 1962, 974. (b) Maeda, H.; Shono,
K.; Ohmori, H. Chem. Pharm. Bull. 1994, 42, 1808.
(5) Bellassoued, M.; Frangin, Y.; Gaudemar, M. Synthesis 1977, 205.
(6) (a) Reddy, L. R.; Saravanan, P.; Corey, E. J. J. Am. Chem. Soc. 2004,
126, 6230. (b) Endo, A.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127,
8298. (c) Miyake, H.; Yamamura, K. Chem. Lett. 1992, 507.
(7) Allylic zinc reagents can alternatively be obtained from allylsulfones or
by fragmentation of homoallylic alcohols: (a) Deng, K.; Chalker, J.; Yang,
A.; Cohen, T. Org. Lett. 2005, 7, 3637. (b) Clayden, J.; Julia, M. J. Chem.
Soc., Chem. Commun. 1994, 1905. (c) Millot, N.; Knochel, P. Tetrahedron
Lett. 1999, 7779.
(8) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem.,
Int. Ed. 2006, 45, 6040.
(9) Using organotitanium and organomanganese reagents, see: (a) Seebach,
D.; Beck, A. K.; Schmidt, B.; Wang, Y. M. Tetrahedron 1994, 50, 4363.
(b) Reetz, M. T.; Steinbach, R. Angew. Chem. 1980, 92, 1044. (c) Reetz,
M. T.; Wenderoth, B.; Peter, R. J. Chem. Soc., Chem. Commun. 1983,
406. (d) Cahiez, G.; Chavant, P.-Y. Tetrahedron Lett. 1989, 7373.
(10) The crystal structures of 3e and the derivatives 3g′ and 3k′ (CCDC-629595
(3e), CDCC-629596 (3g′), and CCDC-629597 (3k′)) can be obtained free
a Isolated yield of analytically pure products. b The diastereoselectivity
was determined by 1H NMR analysis. c Reaction conditions: -30 °C,
12 h.
readily established by literature comparison2d or X-ray analysis. In
the case of i-PrCOMe or MeCOCF3, no direct assessment could
be made, and the alcohols 4b and 4e were converted to the
tetrahydrofurans 5 and 6,12 confirming the generality of the cyclic
chair-like transition state 7 (Scheme 3).
(11) Similar yields and diastereoselectivities are obtained with 1f.
(12) Via a hydroboration, oxidation, and cyclization sequence.
JA071380S
9
J. AM. CHEM. SOC. VOL. 129, NO. 17, 2007 5377