the efficiency of the second ring closing step is considerably
reduced, presumably due to through space quenching of the
excited state of the open photochromic unit by the closed unit,
reducing the quantum yield of the photochemical ring closing
reaction and hence the equilibrium point reached with the reverse
photochemical ring opening reaction.
electronic communication. It is apparent that the silicon atom
spacer22 precludes effective through bond interaction presumably
due to poor orbital overlap with those of the dithienylethene
components.
Acknowledgements
Although photochemical ring closure is an essentially temper-
ature independent process above 80 K, the reverse process, that
of ring opening, is a thermally activated process and typically
below 130 K ring opening of dithienylethenes is not observed even
under prolonged visible irradiation.14a,21 In order to confirm that
the low photostationary state between the c–o and c–c forms at
298 K (Table 1) is due to impedance of the second photochemical
ring closing step, photochemical ring closure of the o–o form was
carried out under conditions designed to avoid photochemical ring
opening. Hence the photochemical ring closure of both 2H(o–o)
and 2H(c–o) was followed by visible spectroscopy at 120 K. For
both, complete conversion to 2H(c–c) was observed, and although
the ring closure is monoexponential for 2H(c–o), it is distinctly
biexponential for 2H(o–o) ring closure, with the initial ring closing
step (o–o to c–o) being three times faster than the second step
(c–o to c–c, Fig. 5). In addition to this, the photostationary state
reached at 120 K was >98% in favour of 2H(c–c). Thus the
lower PSS achieved at room temperature (Table 1) provides strong
evidence that although the two photochromic units do not show
through bond interaction,i.e. delocalisation, they nevertheless
show modest through space electronic communication.
The authors thank the University of Groningen (Ubbo Emmius
scholarship J.A.) and the NRSC-C program (W.R.B.) for financial
support.
Notes and references
‡ Although the fully open form of all compounds could be separated by
HPLC from the partial and fully closed forms, with the exception of 2H,
separation of the single and the doubly closed forms was not achieved.
1 B. L. Feringa, Molecular Switches, Wiley-VCH, Weinheim, Germany,
2001; J. C. Crano and R. Guglielmetti, Organic Photochromic and
Thermochromic Compounds, Plenum Press, New York, NY, 1999; M. A.
Ratner and J. Jortner, Molecular Electronics, Blackwell, Oxford, UK,
1997; B. L. Feringa, R. A. van Delden, N. Koumura and E. M.
Geertsema, Chem. Rev., 2000, 100, 1789–1816; Y. Yokoyama, Chem.
Rev., 2000, 100, 1717–1740; F. M. Raymo and M. Tomasulo, Chem.
Soc. Rev., 2005, 34, 327–336.
2 M. Irie, Chem. Rev., 2000, 100, 1685; H. Tian and S. Yang, Chem. Soc.
Rev., 2004, 33, 85–94.
3 K. Uchida, M. Saito, A. Murakami, T. Kobayashi, S. Nakamura and
M. Irie, Chem.–Eur. J., 2005, 11, 534–542.
4 X.-H. Zhou, F. Wei, F.-S. Zhang, F.-Q. Zhao, X.-D. Liu, F.-Y. Xu and
C.-H. Tung, J. Photochem. Photobiol., A, 2005, 171, 205–208; C. Okabe,
N. Tanaka, T. Fukuminato, T. Kawai, M. Irie, Y. Nibu, H. Shimada, A.
Goldberg, S. Nakamura and H. Sekiya, Chem. Phys. Lett., 2002, 357,
113–118; C. Bertarelli, M. C. Gallazzi, A. Lucotti and G. Zerbi, Synth.
Met., 2003, 139, 933–935.
5 (a) J. E. Green, J. W. Choi, A. Boukai, Y. Bunimovich, E. Johnston-
Halperin, E. Delonno, Y. Luo, B. A. Sheriff, K. Xu, Y. S. Shin, H. R.
Tseng, J. F. Stoddart and J. R. Heath, Nature, 2007, 445, 414–417; (b) T.
Kudernac, S. J. van der Molen, B. J. van Wees and B. L. Feringa, Chem.
Commun., 2006, 3597–3599; (c) N. Katsonis, T. Kudernac, M. Walko,
S. J. van der Molen, B. J. van Wees and B. L. Feringa, Adv. Mater.,
2006, 18, 1397.
6 R. Eelkema, M. M. Pollard, N. Katsonis, J. Vicario, D. J. Broer and
B. L. Feringa, J. Am. Chem. Soc., 2006, 128, 14397–14407.
7 A. Peters and N. R. Branda, Adv. Mater. Opt. Electron., 2000, 10,
245–249.
8 W. L. Zhao and E. M. Carreira, Org. Lett., 2006, 8, 99–102.
9 K. Matsuda and M. Irie, J. Am. Chem. Soc., 2001, 123, 9896–
9897.
10 T. Kaieda, S. Kobatake, H. Miyasaka, M. Marukami, N. Iwai, Y.
Nagata, A. Itaya and M. Irie, J. Am. Chem. Soc., 2002, 124, 2015–
2024.
Fig. 5 Formation of 2H(c–c) from 2H(o–o) at 120 K (kexc 312 nm)
in isomethylpentane monitored at 510 nm (data: circles, bi-exponential
growth; fit: solid line).
11 R. H. Mitchell and S. Bandyopadhyay, Org. Lett., 2004, 6, 1729–1732;
K. Yagi and M. Irie, Chem. Lett., 2003, 32, 848–849.
12 S. Saita, T. Yamaguchi, T. Kawai and M. Irie, ChemPhysChem, 2005,
6, 2300–2306; I. Jung, H. Choi, E. Kim, C.-H. Lee, S. O. Kang and J.
Ko, Tetrahedron, 2005, 61, 12256–12263.
13 S. Kobatake and M. Irie, Tetrahedron, 2003, 59, 8359–8364.
14 (a) M. Irie, T. Eriguchi, T. Takada and K. Uchida, Tetrahedron, 1997,
53, 12263–12271; (b) T. Tsujioka, Y. Hamada and K. Shibata, Appl.
Phys. Lett., 2001, 78, 2282–2284.
15 T. Kawai, T. Sasaki and M. Irie, Chem. Commun., 2001, 711–712.
16 S. Kobatake, S. Kuma and M. Irie, Bull. Chem. Soc. Jpn., 2004, 77,
945–951.
17 J. Kuhni, V. Adamo and P. Belser, Synthesis, 2006, 12, 1946–1948.
18 E. Lukevics, P. Arsenyan, J. Popelis and O. Pudova, Phosphorus, Sulfur
Silicon Relat. Elem., 2003, 178, 639–647.
19 J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, B. L. Feringa and J. H.
Van Esch, Eur. J. Org. Chem., 2003, 10, 1887–1893; L. N. Lucas, J. J. D.
De Jong, R. M. Kellogg, J. H. Van Esch and B. L. Feringa, Eur. J. Org.
In summary, we have demonstrated that multicomponent
dithienylethene based switches in which the components are con-
nected via a very short Me2Si spacer unit can undergo ring closing
and opening between three distinct photochromic states even
with a small but significant electronic communication between
the photochromic units present. By introducing asymmetry in the
bicomponent system, this approach may allow for the develop-
ment of functional systems for incorporation into molecular logic
devices. Furthermore the present system demonstrates that spatial
proximity between components can be achieved independently of
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 1170–1174 | 1173
©