ChemComm
Communication
and amides are compatible with the reaction conditions. The
removal of the directing group affords saccharin derivatives.
We thank the Welch Foundation (Chair E-0044) and NIGMS
(Grant No. R01GM077635) for supporting this research.
Table 2 (continued)
Notes and references
Yield,
%
1 (a) U. Guenther, N. U. Theuerkauf, D. Huse, M. F. Boettcher,
G. Wensing, C. Putensen and A. Hoeft, Anesthesiology, 2012,
116, 56; (b) P. R. Albert and B. Le Francois, Front. Neurosci., 2010,
4, 35; (c) D. Neubert and R. Krowke, Prog. Clin. Biol. Res., 1983,
110, 387; (d) H. Rohse and H.-D. Belitz, Z. Lebensm.-Unters. Forsch.,
1988, 187, 425; (e) A. N. Pronin, H. Tang, J. Connor and W. Keung,
Chem. Senses, 2004, 29, 583.
Entry Ar
Product
13
2-Oxo-2H-1-benzo-pyranyl
65
2 General reviews: (a) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010,
110, 1147; (b) W. R. Gutekunst and P. S. Baran, Chem. Soc. Rev.,
2011, 40, 1976; (c) K. M. Engle, T.-S. Mei, X. Wang and J.-Q. Yu,
Angew. Chem., Int. Ed., 2011, 50, 1478; (d) L. Ackermann, Acc. Chem.
Res., 2014, 47, 281; (e) B. Ye and N. Cramer, Acc. Chem. Res., 2015,
48, 1308; ( f ) O. Daugulis, J. Roane and L. D. Tran, Acc. Chem. Res.,
2015, 48, 1053; First-row transition metal catalysis: (g) A. A. Kulkarni
and O. Daugulis, Synthesis, 2009, 4087; (h) M. Moselage, J. Li and
L. Ackermann, ACS Catal., 2016, 6, 498.
3 (a) Y. Fujiwara, T. Kawauchi and H. Taniguchi, J. Chem. Soc., Chem.
Commun., 1980, 220; (b) S. Ohashi, S. Sakaguchi and Y. Ishii, Chem.
Commun., 2005, 486; (c) R. Giri and J.-Q. Yu, J. Am. Chem. Soc., 2008,
130, 14082; (d) R. Giri, J. K. Lam and J.-Q. Yu, J. Am. Chem. Soc., 2010,
132, 686; (e) E. J. Yoo, M. Wasa and J.-Q. Yu, J. Am. Chem. Soc., 2010,
132, 17378; ( f ) K. Orito, A. Horibata, T. Nakamura, H. Ushito,
H. Nagasaki, M. Yuguchi, S. Yamashita and M. Tokuda, J. Am. Chem.
Soc., 2004, 126, 14342; (g) C. E. Houlden, M. Hutchby, C. D. Bailey,
2-CF3CO-tetra-
hydroisoquinolinyl
14
50d
a
Sulfonamide (0.5 mmol), DIAD (2.5 mmol, added 4 times, 0.625 mmol
per time), Co(OAc)2 (0.15 mmol), Mn(OAc)2 (1 mmol), KOPiv (1 mmol),
DCE (10 mL), 100 1C, 24 h. Yields are isolated yields. Reaction vessel
b
periodically opened to air. Please see the ESI for details. Scale:
c
2.5 mmol, 30 h. Cobalt(II) chloride (20 mol%) catalyst, DIAD (1.5 mmol),
d
24 h at 120 1C. Temperature: 85 1C, 30 h.
´
J. G. Ford, S. N. G. Tyler, S. N. G. Gagne, G. C. Lloyd-Jones and
K. I. Booker-Milburn, Angew. Chem., Int. Ed., 2009, 48, 1830; (h) Z.-H.
Guan, M. Chen and Z.-H. Ren, J. Am. Chem. Soc., 2012, 134, 17490;
(i) R. Lang, L. Shi, D. Li, C. Xia and F. Li, Org. Lett., 2012, 14, 4130;
( j) H. Zhang, D. Liu, C. Chen, C. Liu and A. Lei, Chem. – Eur. J., 2011,
17, 9581; (k) Z.-G. Guan, Z.-H. Ren, S. M. Spinella, S. Yu, Y.-M. Liang and
X. Zhang, J. Am. Chem. Soc., 2009, 131, 729; (l) Y. Du, T. K. Hyster and
T. Rovis, Chem. Commun., 2011, 47, 12074; (m) S. Inoue, H. Shiota,
Y. Fukumoto and N. Chatani, J. Am. Chem. Soc., 2009, 131, 6898;
(n) N. Hasegawa, V. Charra, S. Inoue, Y. Fukumoto and N. Chatani,
J. Am. Chem. Soc., 2011, 133, 8070; (o) E. J. Moore, W. R. Pretzer,
T. J. O’Connell, J. Harris, L. LaBounty, L. Chou and S. S. Grimmer,
J. Am. Chem. Soc., 1992, 114, 5888; (p) C. Wang, L. Zhang, C. Chen,
J. Han, Y. Yao and Y. Zhao, Chem. Sci., 2015, 6, 4610.
Scheme 1 Removal of directing group.
4 (a) S. Murahashi, J. Am. Chem. Soc., 1955, 77, 6403; (b) L. Grigorjeva
and O. Daugulis, Org. Lett., 2014, 16, 4688; (c) N. Barsu, S. K. Bolli and
did not give any carbonylation product. The reaction mechanism
likely includes aminoquinoline-directed cobaltation, carbon
monoxide coordination, and migratory insertion followed by
reductive elimination from acylcobalt(III) species. Reoxidation
to cobalt(III) would complete the catalytic cycle. The reaction
mechanism is under investigation and will be published as a
full paper.
Chen introduced an 8-amino-5-methoxyquinoline auxiliary
that can be oxidatively cleaved.9 The carbonylation of sulfonamide
8 gave product 9 in 54% yield (Scheme 1). The cleavage of the
5-methoxyaminoquinoline auxiliary under the original conditions
employing ceric ammonium nitrate was unsuccessful. However,
the removal of the methyl group with BBr3 followed by oxidation
with an iodine(III) reagent afforded methylsaccharin 10 in 63%
yield.10
´
B. Sundararaju, Chem. Sci., 2017, 8, 2431; (d) P. Williamson, A. Galvan
and M. Gaunt, Chem. Sci., 2017, 8, 2588; (e) X. Wu, Y. Zhao and H. Ge,
J. Am. Chem. Soc., 2015, 137, 4924; ( f ) X.-G. Liu, S.-S. Zhang,
C.-Y. Jiang, J.-Q. Wu, Q. Li and H. Wang, Org. Lett., 2015, 17, 5404.
5 Aminoquinoline sulfonamides in cobalt-directed C–H bond function-
alization: (a) O. Planas, C. Whiteoak, A. Company and X. Ribas,
Adv. Synth. Catal., 2015, 357, 4003; (b) D. Kalsi and B. Sundararaju,
Org. Lett., 2015, 17, 6118; (c) Y. Ran, Y. Yang and L. Zhang, Tetra-
hedron Lett., 2016, 57, 3322. Palladium-catalyzed sulfonamide C–H
carbonylation: (d) H.-X. Dai, A. F. Stepan, M. S. Plummer, Y.-H. Zhang
and J.-Q. Yu, J. Am. Chem. Soc., 2011, 133, 7222.
6 (a) L. Grigorjeva and O. Daugulis, Angew. Chem., Int. Ed., 2014, 53, 10209;
(b) L. Grigorjeva and O. Daugulis, Org. Lett., 2014, 16, 4684; (c) L. Grigorjeva
and O. Daugulis, Org. Lett., 2015, 17, 1204; (d) T. T. Nguyen, L. Grigorjeva
and O. Daugulis, ACS Catal., 2016, 6, 551.
7 (a) R. Stolle and W. Reichert, J. Prakt. Chem., 1929, 123, 82; (b) W.-Y. Yu,
W. N. Sit, K.-M. Lai, Z. Zhou and A. S. C. Chan, J. Am. Chem. Soc., 2008,
130, 3304; (c) J. Ni, J. Li, Z. Fan and A. Zhang, Org. Lett., 2016, 18, 5960.
8 T. Busujima, H. Tanaka, Y. Shirasaki, E. Munetomo, M. Saito,
K. Kitano, T. Minagawa, K. Yoshida, N. Osaki and N. Sato, Bioorg.
Med. Chem., 2015, 23, 5922.
9 (a) G. He, S.-Y. Zhang, W. A. Nack, Q. Li and G. Chen, Angew. Chem.,
Int. Ed., 2013, 52, 11124; (b) C. Yamamoto, K. Takamatsu, K. Hirano
and M. Miura, J. Org. Chem., 2016, 81, 7675.
In conclusion, we have developed a method for cobalt-
catalyzed, aminoquinoline-directed carbonylation of aryl sulfo-
namides. The reactions proceed in the presence of DIAD as a
carbon monoxide source, Mn(OAc)2 as a cooxidant, and employ
KOPiv as a base. Functional groups such as halogens, esters,
10 A. Nakazaki, A. Mori, S. Kobayashi and T. Nishikawa, Tetrahedron
Lett., 2012, 53, 7131.
This journal is ©The Royal Society of Chemistry 2017
Chem. Commun.