498
Vol. 55, No. 3
providing Sn(OTf)2.
5.35 (0.5H, d, Jꢁ12.7 Hz), 5.92—5.97 (1H, m), 6.20—6.26 (1H, m), 6.27
(0.5H, d, Jꢁ15.2 Hz), 6.28 (0.5H, d, Jꢁ15.4 Hz), 6.32—6.37 (1H, m),
6.63—6.67 (1H, m), 6.64 (0.5H, s), 6.66 (0.5H, s), 7.01—7.45 (26H, m).
13C-NMR (100 MHz, CDCl3, mixture of rotamers): d 18.6, 68.7, 69.1, 70.3,
70.8, 72.3, 72.5, 72.8, 73.4, 73.8, 74.0, 74.2, 74.4, 74.6, 75.0, 75.5, 75.7,
77.2, 77.6, 85.3, 85.5, 95.7, 96.4, 102.9, 103.6, 120.9, 126.6, 127.1, 127.4,
127.4, 127.5, 127.5, 127.6, 127.7, 127.9, 127.9, 128.0, 128.1, 128.3, 128.4,
128.5, 128.8, 131.4, 134.4, 135.3, 135.3, 137.1, 137.3, 138.0, 138.0, 138.7,
139.0, 139.2, 139.3, 139.5, 139.5, 139.6, 159.3, 160.3, 161.5, 164.3, 167.6,
168.3. HR-ESI-MS m/z: Calcd for C53H52O8Na ([MꢂNa]ꢂ) 839.3554,
Found 839.3524.
References and Notes
1) Kimura J., Furui M., Kanda M., Sugiyama M., Jpn. Kokai Tokkyo
Koho, JP 2002047281 (2002).
2) Review of natural products containing pyrone ring, see: McGlacken G.
P., Fairlamb Ian J. S., Nat. Prod. Rep., 22, 369—385 (2005).
3) Recent report for natural products containing conjugated polyene see:
Wang F., Luo D.-Q., Liu J.-K., J. Antibiot., 58, 412—415 (2005).
4) Recent report for natural products containing conjugated polyene see:
Igarashi Y., In Y., Ishida T., Fujita T., Yamanaka T., Onaka H., Furumai
T., J. Antibiot., 58, 523—525 (2005).
5) Recent report for natural products containing conjugated polyene see:
Weber R. W. S., Muci A., Davoli P., Tetrahedron Lett., 45, 1075—1078
(2004).
6) Review for natural products containing polyene, see: Ishibashi M.,
Med. Chem., 1, 575—590 (2005).
7) Review for natural products containing polyene, see: Thirsk C., Whit-
ing A., J. Chem. Soc., Perkin Trans. 1, 2002, 999—1023 (2002).
8) Kanai A., Kamino T., Kuramochi K., Kobayashi S., Org. Lett., 5,
2837—2839 (2003).
9) Wang K., Venkataraman H., Kim Y. G., Cha J. K., J. Org. Chem., 56,
7174—7177 (1991).
10) Scott W. J., “The Stille Reaction in Organic Reactions,” Vol. 50, Chap.
1, ed. by Paquette L. A., John Willey & Sons, Inc., New York, 1997,
pp. 1—652.
11) Smith A. B., III, Wan Z., J. Org. Chem., 65, 3738—3753 (2000).
12) For the aldol reaction of pyrone, see: Kirsch S. F., Bach T., Chem. Eur.
J., 11, 7007—7023 (2005).
13) For the aldol reaction of pyrone, see: Casiraghi G., Zanardi F., Ap-
pendino G., Rassu G., Chem. Rev., 100, 1929—1972 (2000), and refer-
ences therein.
(1E,3E,5E)-6-Bromo-1-{4-benzyloxy-3-(2,3,4,6,-tetra-O-benzyl-a-D-
galactopyranosyl)-2-pyrone}-1,3,5-hexatriene (15) The aldol reaction of
pyrone moiety 7 with aldehyde 6 was carried out with the same procedure
described above.
The stereochemistry of compound 15 was determined by 1H-NMR analy-
sis in DMSO-d6 at 100 °C.
Rf 0.4 (15 : 1 benzene–CH3CN). [a]D24 ꢀ5.1° (cꢁ1.38, CHCl3); IR (neat)
1
cmꢀ1: 3060, 3029, 2869, 1701, 1536, 1357, 1098, 997, 744, 699. H-NMR
(600 MHz, DMSO-d6, mixture of rotamers): d 3.45—3.56 (2H, m), 3.68—
3.74 (2H, m), 4.06 (1H, m), 4.25 (0.5H, d, Jꢁ11.6 Hz), 4.37—4.50 (4H, m),
4.55—4.60 (2H, m), 4.65 (0.5H, d, Jꢁ12.2 Hz), 4.65 (0.5H, d, Jꢁ12.2 Hz),
4.73—4.79 (2H, m), 4.84 (0.5H, d, Jꢁ12.9 Hz), 4.87 (0.5H, d, Jꢁ12.7 Hz),
5.09 (0.5H, d, Jꢁ13.1 Hz), 5.22 (0.5H, d, Jꢁ13.1 Hz), 5.28(0.5H, d, Jꢁ
12.7 Hz), 5.33 (0.5H, d, Jꢁ12.7 Hz), 6.37 (0.5H, d, Jꢁ15.3 Hz), 6.38 (0.5H,
d, Jꢁ15.3 Hz), 6.53 (0.5H, dd, Jꢁ11.0, 14.9 Hz), 6.54 (0.5H, dd, Jꢁ10.9,
14.8 Hz), 6.62 (1H, dd, Jꢁ10.8, 14.8 Hz), 6.70 (0.5H, s), 6.71 (0.5H, s), 6.85
(0.5H, d, Jꢁ13.4 Hz), 6.86 (0.5H, d, Jꢁ13.4 Hz), 6.95 (0.5H, dd, Jꢁ10.8,
13.4 Hz), 6.96 (0.5H, dd, Jꢁ10.6, 13.3 Hz), 6.99—7.43 (26H, m). 13C-NMR
(100 MHz, DMSO-d6, mixture of rotamers): d 69.3, 70.2, 70.7, 71.3, 72.1,
72.5, 72.6, 73.1, 73.9, 74.0, 74.1, 74.5, 74.6, 75.0, 75.7, 76.9, 77.1, 84.3,
84.5, 97.7, 98.2, 102.9, 103.2, 113.3, 113.4, 124.0, 127.2, 127.2, 127.3,
127.3, 127.4, 127.4, 127.5, 127.5, 127.6, 127.6, 127.7, 127.9, 127.9, 128.1,
128.1, 128.1, 128.2, 128.3, 128.4, 128.4, 128.7, 132.2, 132.3, 135.0, 135.2,
135.5, 135.6, 135.8, 136.0, 137.5, 138.3, 138.9, 139.0, 139.0, 139.2, 139.3,
139.4, 158.5, 159.3, 160.6, 163.4, 167.8, 168.3. HR-ESI-MS m/z: Calcd for
C52H49O8NaBr ([MꢂNa]ꢂ) 903.2508, Found 903.2509.
14) For the aldol reaction of pyrone, see: Oikawa H., Kobayashi T.,
Katayama K., Suzuki Y., Ichihara A., J. Org. Chem., 63, 8748—8756
(1998).
15) For the aldol reaction of pyrone, see: Lyga J. W., J. Heterocyclic
Chem., 32, 515—518 (1995).
16) For the aldol reaction of pyrone, see: Paterson I., Wallace D. J., Tetra-
hedron Lett., 35, 9477—9480 (1994).
17) For the aldol reaction of pyrone, see: Munchhof M. J., Heathcock C.
H., J. Org. Chem., 59, 7566—7567 (1994).
18) For the aldol reaction of pyrone, see: Suh H., Wilcox C. S., J. Am.
Chem. Soc., 110, 470—481 (1988).
19) For the aldol reaction of pyrone, see: Ichihara A., Miki M., Tazaki H.,
Sakamura S., Tetrahedron Lett., 28, 1175—1178 (1987).
20) For the aldol reaction of pyrone, see: Williams D. R., White F. H., J.
Org. Chem., 52, 5067—5079 (1987).
21) For the aldol reaction of pyrone, see: Wachter M. P., Harris T. M.,
Tetrahedron, 26, 1685—1694 (1970).
22) For the alkylation of pyrone, see: Doundoulakis T., Xiang A. X., Lira
R., Agrios K. A., Webber S. E., Sisson W., Aust R. M., Shah A. M.,
Showalter R. E., Appleman J. R., Simonsen K. B., Bioorg. Med. Chem.
Lett., 14, 5667—5672 (2004).
23) For the alkylation of pyrone, see: Jones R. C. F., Patience J. M., Tetra-
hedron Lett., 30, 3217—3218 (1989).
24) For the alkylation of pyrone, see: Groutas W. C., Huang T. L., Stanga
M. A., Brubaker M. J., Moi M. K., J. Heterocyclic Chem., 22, 433—
435 (1985).
(1E,3E,5E,7E)-9-(Dimethoxyphosphinyl)-1-{4-benzyloxy-3-(2,3,4,6-
tetra-O-benzyl-a-D-galactopyranosyl)-2-pyrone}-1,3,5,7-nonatetraene
(4) To a stirred solution of vinyl stannane 5 (0.064 g, 0.145 mmol) and
vinyl bromide 15 (0.064 g, 0.073 mmol) in DMF (1.0 ml) was added
Pd2(dba)3 (0.001 g, 0.001 mmol) and AsPh3 (0.022 g, 0.073 mmol) succes-
sively. The resultant mixture was stirred for 30 min at 70 °C. Water was
added to the reaction mixture and extracted with AcOEt. The organic extract
was washed with Brine, dried with Na2SO4, then filtered, and evaporated in
vacuo. After the residue was purified by short plug of silica gel, the resultant
oil was purified by chromatography (preparative TLC; silica gel, AcOEt) in
the dark room with a red light to afford coupling product 4 (0.043 g, 63%) as
yellow oil.
Rf 0.2 (AcOEt). [a]D21 ꢀ6.37° (cꢁ0.472, MeOH). IR (neat) cmꢀ1: 2254,
1
2128, 1661, 1448, 1410, 1025. H-NMR (600 MHz, DMSO-d6, mixture of
rotamers): d 2.79 (1H, d, Jꢁ22.9 Hz), 2.80 (1H, d, Jꢁ22.9 Hz), 3.45—3.56
(2H, m), 3.61 (1.5H, s), 3.61 (1.5H, s), 3.63 (1.5H, s), 3.63 (1.5H, s), 3.66—
3.74 (2H, m), 4.05—4.06 (1H, m), 4.24 (0.5H, d, Jꢁ11.6 Hz), 4.38 (0.5H, d,
Jꢁ12.0 Hz), 4.39 (0.5H, d, Jꢁ12.0 Hz), 4.41 (0.5H, d, Jꢁ11.9 Hz), 4.45
(0.5H, d, Jꢁ11.9 Hz), 4.46—4.49 (1H, m), 4.47 (0.5H, d, Jꢁ12.3 Hz),
4.55—4.60 (2H, m), 4.64 (0.5H, d, Jꢁ11.9 Hz), 4.65 (0.5H, d, Jꢁ12.1 Hz),
4.73—4.79 (2H, m), 4.83 (0.5H, d, Jꢁ13.0 Hz), 4.85 (0.5H, d, Jꢁ13.0 Hz),
5.09 (0.5H, d, Jꢁ13.1 Hz), 5.22 (0.5H, d, Jꢁ13.1 Hz), 5.28 (0.5H, d, Jꢁ
12.7 Hz), 5.33 (0.5H, d, Jꢁ12.7 Hz), 5.69—5.76 (1H, m), 6.29 (0.5H, d, Jꢁ
15.2 Hz), 6.30 (0.5H, d, Jꢁ15.1 Hz), 6.32—6.39 (2H, m), 6.43—6.51 (2H,
m), 6.65 (0.5H, s), 6.66 (0.5H, s), 6.71 (1H, dd, Jꢁ11.1, 14.5 Hz), 6.99—
7.43 (26H, m). 13C-NMR (100 MHz, DMSO-d6, mixture of rotamers): d
28.9 (d, Jꢁ135 Hz), 52.5, 52.6, 69.3, 70.2, 70.6, 71.3, 72.1, 72.5, 72.6, 73.8,
74.0, 74.1, 74.5, 74.6, 75.0, 75.7, 76.9, 77.1, 84.4, 84.5, 97.2, 97.7, 102.5,
102.8, 122.4, 125.7, 125.8, 127.2, 127.3, 127.4, 127.5, 127.5, 127.5, 127.6,
127.7, 127.7, 127.9, 128.0, 128.1, 128.1, 128.2, 128.3, 128.4, 128.4, 128.4,
128.7, 131.6, 131.6, 132.0, 132.1, 134.7, 134.8, 135.8, 135.8, 135.9, 136.0,
138.3, 138.3, 138.9, 139.0, 139.0, 139.1, 139.2, 139.2, 139.3, 139.4, 158.9,
159.7, 160.8, 163.6, 167.9, 168.4. HR-ESI-MS m/z: Calcd for C57H59O11NaP
([MꢂNa]ꢂ) 973.3687, Found 973.668.
25) Since all protective groups are desirable to be deprotected in one oper-
ation at the final step, benzyl group was chosen as the protective
group.
26) Direct C-glycosylation of 4-benzyloxy-6-methyl pyrone gave only a-
C-glycoside in low yield.
27) Protection of the hydroxyl group of pyrone moiety proceeded
smoothly to afford the corresponding benzyl ether 7 in 86% yield as a
mixture of rotamers under Mitsunobu conditions (DEAD, PPh3 and
1
BnOH).The H-NMR (CDCl3 at 25 °C) of benzyl protected pyrone 7
was rather complex, and it seemed to be a mixture of two isomers.
However, the 1H-NMR of 7 in DMSO-d6 at 80 °C was gathered and
bundled to single isomer. That means that C3-b-galactopyranosyl-4-
benzyloxy-6-methylpyrone might exist as a mixture of rotamer at
25 °C. In contrast, a rotamer was not observed in the case of the corre-
sponding a-isomer.
Acknowledgements We would like to thank Central Glass Co., Ltd. for