Organic Letters
Letter
Notes
tetrafluoroborate 2a under the conditions (Scheme 2 eq 2), no
free sulfur dioxide (SO2) gas was detected (see the Supporting
Information for details), which indicated the important role of
the tertiary amine in DABCO.
Based on the aforementioned experimental observations and
previous reports,10,11 a plausible mechanism was proposed
(Scheme 3). The arydiazonium cation 2 would combine with
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Natural Science Foundation of China
(nos. 21272028 and 21572025), “Innovation & Entrepreneur-
ship Talents” Introduction Plan of Jiangsu Province, the Key
University Science Research Project of Jiangsu Province
(15KJA150001), Jiangsu Key Laboratory of Advanced Catalytic
Materials & Technology (BM2012110), and Advanced
Catalysis and Green Manufacturing Collaborative Innovation
Center for financial support. S.S. thanks the National Natural
Science Foundation of China (no. 21602019) and Young
Natural Science Foundation of Jiangsu Province (BK20150263)
for financial support.
Scheme 3. Proposed Mechanism
REFERENCES
■
(1) For selected reviews, see: (a) Klein, J. E. M. N.; Taylor, R. J. K.
Eur. J. Org. Chem. 2011, 2011, 6821. (b) Dalpozzo, R.; Bartoli, G.;
Bencivenni, G. Chem. Soc. Rev. 2012, 41, 7247. (c) Lin, H.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 36. (d) Jensen, B.
S. CNS Drug Rev. 2002, 8, 353. (e) Marti, C.; Carreira, E. M. Eur. J.
Org. Chem. 2003, 2003, 2209. (f) Galliford, C. V.; Scheidt, K. A.
Angew. Chem., Int. Ed. 2007, 46, 8748. (g) Singh, G. S.; Desta, Z. Y.
Chem. Rev. 2012, 112, 6104. (h) Shen, K.; Liu, X.; Lin, L.; Feng, X.
Chem. Sci. 2012, 3, 327. (i) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K.
Org. Biomol. Chem. 2012, 10, 5165. (j) Hong, L.; Wang, R. Adv. Synth.
Catal. 2013, 355, 1023.
(2) For selected review: (a) Chen, Z.-M.; Zhang, X.-M.; Tu, Y.-Q.
Chem. Soc. Rev. 2015, 44, 5220. For selected reviews of oxindoles, see:
(b) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J. Synthesis 2015, 47, 604.
(c) Song, R.-J.; Liu, Y.; Xie, Y.-X.; Li, J.-X. Synthesis 2015, 47, 1195.
(d) Abdukader, A.; Zhang, Y. H.; Zhang, Z. P.; Chenjiang, L. Youji
Huaxue 2016, 36, 875. (e) Li, C.-C.; Yang, S.-D. Org. Biomol. Chem.
2016, 14, 4365.
DABSO to generate the complex A through electrostatic
interaction. Then the complex A produced cation intermediate
B, aryl radical C, and free SO2 by the homolytic cleavage of the
N−S bond12 and a single-electron transfer. After the reaction of
aryl radical C and free SO2, the produced arylsulfonyl radical D
attacked the CC bond of 1 to afford the intermediate E.13
Afterward, it underwent ipso cyclization toward cyclized
intermediate F.14 Then the desulfonylative migration took
place to provide intermediate G. Finally, the intermediate G
was oxidized by the Cu(II) to afford product 3 proceeding with
single-electron transfer. Meanwhile, Cu(I) was oxidized into
copper(II) by radical cation B to fulfill the catalytic cycle.
In conclusion, we have developed an efficient three-
component reaction of N-(arylsulfonyl)acrylamides, DABSO,
and aryldiazonium tetrafluoroborates catalyzed by copper(II) to
access sulfonated oxindole in moderate to good yields. The in
situ generated arylsulfonyl radical via addition of an aryl radical
to sulfur dioxide and the subsequent single electron transfer
served to be the key steps for the reaction.
(3) (a) Kong, W. Q.; Casimiro, M.; Merino, E.; Nevado, C. J. Am.
Chem. Soc. 2013, 135, 14480. (b) Li, L.; Deng, M.; Zheng, S.-C.;
Xiong, Y. P.; Tan, B.; Liu, X. Y. Org. Lett. 2014, 16, 504. (c) Zheng, L.
W.; Yang, C.; Xu, Z. Z.; Gao, F.; Xia, W. J. J. Org. Chem. 2015, 80,
5730. (d) Kong, W.; Casimiro, M.; Fuentes, N.; Merino, E.; Nevado,
C. Angew. Chem., Int. Ed. 2013, 52, 13086. (e) Kong, W. Q.; Merino,
E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078. For the
transformation of radical intermediate derived from radical addition to
alkenyl, aryl migrations, and desulfonylation leading to C−C and C−N
formation, see: (f) Fuentes, N.; Kong, W. Q.; Fernan
́ ́
dez-Sanchez, L.;
Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.
(4) (a) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011,
111, 455. (b) Li, Y.-M.; Sun, M.; Wang, H. L.; Tian, Q.-P.; Yang, S. D.
Angew. Chem., Int. Ed. 2013, 52, 3972. (c) Matcha, K.; Narayan, R.;
Antonchick, A. P. Angew. Chem., Int. Ed. 2013, 52, 7985.
(5) Simpkins, N. S. Sulfones in Organic Synthesis; Pergamon: Oxford,
1993.
(6) (a) Fang, Y.; Luo, Z.; Xu, X. RSC Adv. 2016, 6, 59661. (b) Craig,
D. C.; Edwards, G. L.; Muldoon, C. A. Tetrahedron 1997, 53, 6171.
(c) Yoshimatsu, M.; Hayashi, M.; Tanabe, G.; Muraoka, O.
Tetrahedron Lett. 1996, 37, 4161. (d) Mantrand, N.; Renaud, P.
Tetrahedron 2008, 64, 11860. (e) Cristol, S. J.; Davies, D. I. J. Org.
Chem. 1964, 29, 1282. (f) Fang, J. M.; Chen, M. Y. Tetrahedron Lett.
1987, 28, 2853.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectra (PDF)
(7) (a) Xu, Y.; Tang, X.; Hu, W.; Wu, W.; Jiang, H. Green Chem.
2014, 16, 3720. (b) Kariya, A.; Yamaguchi, T.; Nobuta, T.; Tada, N.;
Miura, T.; Itoh, A. RSC Adv. 2014, 4, 13191.
(8) (a) Shen, T.; Yuan, Y. Z.; Song, S.; Jiao, N. Chem. Commun. 2014,
50, 4115. (b) Wei, W.; Wen, J. W.; Yang, D. S.; Du, J.; You, J. M.;
Wang, H. Green Chem. 2014, 16, 2988. (c) Xia, D.; Miao, T.; Li, P. H.;
Wang, L. Chem. - Asian J. 2015, 10, 1919. (d) Jiang, Y.-Y.; Liang, S.;
Zeng, C.-C.; Hu, L.-M.; Sun, B.-G. Green Chem. 2016, 18, 6311.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
C
Org. Lett. XXXX, XXX, XXX−XXX