and experiments4 favorably suggests the involvement of
intermediate 4 over that of 6/7, the preference among these
reaction pathways should depend on the interplay of many
factors,5 the most important of which seems to be the nature
of the R substituent.6 Given the cationic charge development
on the alkyne moiety upon complexation of electrophilic
metals, the role of R as an electron-releasing group seems
to be pivotal in determining the fate of the initially formed
alkyne-metal complex, generating intermediates 2, 4, or 6.
This hypothesis is further supported by the reactions of
related enynes of type 8, where the nature of X determines
the formation of intermediates 9 and 11, which eventually
generate products 10/10′ and 12, respectively (Scheme 2).7
Table 1. Reactivity of Alkene vs Acetate as the Initiatora
Scheme 2
a With 5 mol % catalyst loading under balloon pressure of CO. b All
yields are isolated yields after 4 h of total reaction time. c The E/Z ratios
were determined by H NMR before purification. d The E/Z ratios change
during the purification.
1
We envisioned that the use of 1,3-diyne moiety in 1, where
R ) alkyne, would not only bias the electronics of the
reacting alkyne to form metal carbenes but also allow these
initially formed alkylidene intermediates to undergo metal-
lotropic [1,3]-shift,8 thereby promoting the mode of reaction
pathway not available for the monoalkyne-containing enyne
1. Herein we report a unique selectivity profile of 1,3-diynes
upon electrophilic metal activation to form alkynyl al-
kylidenes and their subsequent facile metallotropic [1,3]-
shift.
First, the reactivity of 1,3-diynes 13a9 that contain both
the competing tethered alkene and propargylic acetoxy group
was examined with several different metal complexes.10 From
a brief screening, a platinum-based catalyst system PtCl2/
CO in toluene at 80 °C, a condition used by Fu¨rstner for the
reactions of enynes of type 1,11,12 was found to be most
(3) (a) Soriano, E.; Ballesteros, P.; Marco-Contelles, J. Organometallics
2005, 24, 3182. (b) Nieto-Oberhuber, C.; Paz Mun˜oz, M.; Bun˜uel, E.;
Nevado, C.; Ca´rdenas, D. J.; Echavarren, A. M. Angew. Chem., Int. Ed.
2005, 44, 6146.
(4) (a) Fu¨rstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006. For a
slightly different mechanistic interpretation, see: (b) Fehr, C.; Galindo, J.
Angew. Chem., Int. Ed. 2006, 45, 2901.
(5) For the Rautenstrauch reaction involving 3-acetoxy-1,4-enynes, see:
(a) Faza, O. N.; Lopez, C. S.; Alvarez, R.; de Lera, A. R. J. Am. Chem.
Soc. 2006, 128, 2434. (b) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem.
Soc. 2005, 127, 5802. (c) Rautenstrauch, V. J. Org. Chem. 1984, 49, 950.
(6) For reactions of 3-acetoxy-1,4- and 1,5-enynes with electron-
withdrawing carboxylate substituent, see: (a) Prasad, B. A. B.; Yoshimoto,
F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468. (b) Reference 2f.
(7) For a theoretical calculations for divergent skeletal rearrangement
of 1,6-enynes, see ref 3b.
(8) [1,3]-Shift: (a) Kim, M.; Lee, D. J. Am. Chem. Soc. 2005, 127, 18024.
(b) Kim, M.; Miller, R. L.; Lee, D. J. Am. Chem. Soc. 2005, 127, 12818.
(c) Barluenga, H.; de la Rua´, R. B.; de Sa´a, D.; Ballesteros, A.; Toma´s, M.
Angew. Chem., Int. Ed. 2005, 44, 4981. (d) van Otterlo, W. A. L.; Ngidi,
E. L.; de Koning, C. B.; Fernandes, M. A. Tetrahedron Lett. 2004, 45,
659. (e) Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J. M.; Xu, S. L. J.
Am. Chem. Soc. 1993, 115, 2637. [1,1.5]-Shift: (f) Casey, C. P.; Dzwiniel,
T. L. Organometallics 2003, 22, 5285. (g) Casey, C. P.; Dzwiniel, T. L.;
Kraft, S.; Guzei, I. A. Organometallics 2003, 22, 3915. (h) Ortin, Y.;
Sournia-Saquet, A.; Lugan, N.; Mathieu, R. Chem. Commun. 2003, 1060.
(i) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2000, 122,
3771. (j) Casey, C. P.; Kraft, S.; Powell, D. R. Organometallics 2001, 20,
2651. (k) Casey, C. P.; Kraft, S.; Kavana, M. Organometallics 2001, 20,
3795. (l) Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2002,
124, 2584. Also see recent examples of the closely related bond shift of
free alkynyl carbenes: (m) Bowling, N. P.; Halter, R. J.; Hodges, J. A.;
Seburg, R. A.; Thomas, P. S.; Simmons, C. S.; Stanton, J. F.; McMahon,
R. J. J. Am. Chem. Soc. 2006, 128, 3291 and references therein.
(9) For the preparation of diynes, see the Supporting Information.
(10) Pt- and Au-catalyzed rearrangement of 1,3-diynes, see: (a) Cho,
E. J.; Kim, M.; Lee, D. Eur. J. Org. Chem. 2006, 3074. See also [RuCl2-
(CO)3]2-catalyzed reaction: (b) Miki, K.; Ohe, K.; Uemura, S. J. Am. Chem.
Soc. 2006, 128, 9270.
(11) Representative examples of PtCl2-catalyzed reactions with/without
CO: (a) Fu¨rstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005,
127, 8244. (b) Mamane, V.; Gress, T.; Krause, H.; Fu¨rstner, A. J. Am. Chem.
Soc. 2004, 126, 8654. (c) Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou,
K.; Mainetti, E.; Mourie`s, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria,
M. J. Am. Chem. Soc. 2004, 126, 8656. (d) Nevado, C.; Ferrer, C.;
Echavarren, A. M. Org. Lett. 2004, 6, 3191. (e) Mainetti, E.; Mourie`s, V.;
Fensterbank, L.; Malacria, M.; Marco-Contelles, J. Angew. Chem., Int. Ed.
2002, 41, 2132. (f) Fu¨rstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc.
2000, 122, 6785. (g) Chatani, N.; Furukawa, N.; Sakurai, H.; Murai, S.
Organometallics 1996, 15, 901.
(12) The current reaction resulted in a low conversion without CO.
5414
Org. Lett., Vol. 8, No. 23, 2006