Wen et al.
Since N,N-dimethylformamide (DMF) proved to be an
effective Lewis base catalyst for some important reactions,5 the
rational design and synthesis of new chiral DMF analogues for
enantioselective synthesis have become the focus of attention.6
However, to the best of our knowledge, the chiral formamide-
based catalysts were restricted to allylation and hydrosilylation
reactions. In this context, chiral formamides have been applied
to the one-pot, three-component Strecker reaction for the first
time, and delivered good yields and enantioselectivities.
FIGURE 1. Structure of monoformamides.
Results and Discussion
Allyltrichlorosilane and trichlorosilane can be activated by
chiral formamides through formyl coordination to silicon.6d,j Our
earlier studies on bifunctional catalysis indicated that imines
could be activated through hydrogen bonding.4l,m Inspired by
those studies, we presumed that N-formyl-(L)-proline amides,
which contained both the formyl and amide moieties, might have
the ability to catalyze the asymmetric Strecker reaction.
Therefore, the one-pot Strecker reaction starting from benzal-
dehyde, (1,1-diphenyl)methylamine, and TMSCN was chosen
as the model reaction to verify our strategy. At the outset, the
monoformamide catalyst 1e derived from L-proline and (S)-1-
phenylethanamine was tested. Encouragingly, 96% yield and
44% ee were obtained employing 20 mol % 1e. Then, a series
of monoformamides 1a-g were prepared and the influence of
the substituent R on the catalytic behavior was studied (Table
FIGURE 2. Structure of bisformamides.
TABLE 1. Survey of Chiral Monoformamide Catalysts 1a-g on
the One-Pot, Three-Component Strecker Reactiona
(4) (a) Corey, E. J.; Grogan, M. J. Org. Lett. 1999, 1, 157-160. (b)
Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901-4902.
(c) Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem., Int. Ed.
2000, 39, 1279-1281. (d) Vachal, P.; Jacobsen, E. N. Org. Lett. 2000, 2,
867-870. (e) Pan, S. C.; Zhou, J.; List, B. Angew. Chem., Int. Ed. 2007,
46, 612-614. (f) Pan, S. C.; List, B. Org. Lett. 2007, 9, 1149-1151. (g)
Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012-10014.
(h) Wenzel, A. G.; Lalonde, M. P.; Jacobsen, E. N. Synlett 2003, 1919-
1922. (i) Tsogoeva, S. B.; Yalalov, D. A.; Hateley, M. J.; Weckbecker, C.;
Huthmacher, K. Eur. J. Org. Chem. 2005, 4995-5000. (j) Liu, B.; Feng,
X. M.; Chen, F. X.; Zhang, G. L.; Cui, X.; Jiang, Y. Z. Synlett 2001, 1551-
1554. (k) Jiao, Z. G.; Feng, X. M.; Liu, B.; Chen, F. X.; Zhang, G. L.;
Jiang, Y. Z. Eur. J. Org. Chem. 2003, 3818-3826. (l) Huang, J. L.; Liu,
X. H.; Wen, Y. H.; Qin, B.; Feng, X. M. J. Org. Chem. 2007, 72, 204-
208. (m) Huang, X.; Huang, J. L.; Wen, Y. H.; Feng, X. M. AdV. Synth.
Catal. 2006, 348, 2579-2584. (n) Huang, J.; Corey, E. J. Org. Lett. 2004,
6, 5027-5029. (o) Berkessel, A.; Mukherjee, S.; Lex, J. Synlett 2006, 41-
44. (p) Ooi, T.; Uematsu, Y.; Maruoka, K. J. Am. Chem. Soc. 2006, 128,
2548-2549. (q) Rueping, M.; Sugiono, E.; Azap, C. Angew. Chem., Int.
Ed. 2006, 45, 2617-2619. (r) Rueping, M.; Sugiono, E.; Moreth, S. A.
AdV. Synth. Catal. 2007, 349, 759-764.
entry
catalyst
yieldb (%)
eec (%)
1
2
3
4
5
6
7
1a
1b
1c
1d
1e
1f
92
99
99
99
96
99
93
35
32
38
20
44
46
11
1g
a Reaction condition: benzaldehyde (0.2 mmol) and (1,1-diphenyl)m-
ethylamine (0.2 mmol) were stirred for 1 h at rt before catalyst 1 was added.
Then TMSCN (0.4 mmol) was added at 0 °C. b Isolated yield. c Determined
by chiral HPLC on a Chiralcel AD-H column.
(5) (a) Kobayashi, S.; Nishio, K. Tetrahedron Lett. 1993, 34, 3453-
3456. (b) Kobayashi, S.; Nishio, K. J. Org. Chem. 1994, 59, 6620-6628.
(c) Wang, Z.; Wang, D.; Sui, X. J. Chem. Soc., Chem. Commun. 1996,
2261-2262. (d) Kobayashi, S.; Nishio, K. J. Am. Chem. Soc. 1995, 117,
6392-6393. (e) Saito, S.; Bunya, N.; Inaba, M.; Moriwake, T.; Torii, S.
Tetrahedron Lett. 1985, 26, 5309-5312. (f) Kobayashi, S.; Yasuda, M.;
Hachiya, I. Chem. Lett. 1996, 407-408. (g) Prakash, G. K. S.; Vaghoo,
H.; Panja, C.; Surampudi, V.; Kultyshev, R.; Mathew, T.; Olah, G. A. Proc.
Natl. Acad. Sci. U.S.A. 2007, 104, 3026-3030.
(6) (a) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi, Y. Tetrahedron
Lett. 1998, 39, 2767-2770. (b) Iseki, K.; Mizuno, S.; Kuroki, Y.; Kobayashi,
Y. Tetrahedron 1999, 55, 977-988. (c) Jagtap, S. B.; Tsogoeva, S. B. Chem.
Commun. 2006, 4747-4749. (d) Iwasaki, F.; Onomura, O.; Mishima, K.;
Maki, T.; Matsumura, Y. Tetrahedron Lett. 1999, 40, 7507-7511. (e) Wang,
Z. Y.; Ye, X. X.; Wei, S. Y.; Wu, P. C.; Zhang, A. J.; Sun, J. Org. Lett.
2006, 8, 999-1001. (f) Wang, Z. Y.; Cheng, M. N.; Wu, P. C.; Wei, S. Y.;
Sun, J. Org. Lett. 2006, 8, 3045-3048. (g) Malkov, A. V.; Figlus, M.;
Stoncˇius, S.; Kocˇovsky´, P. J. Org. Chem. 2007, 72, 1315-1325. (h) Malkov,
A. V.; Stoncˇius, S.; Kocˇovsky´, P. Angew. Chem., Int. Ed. 2007, 46, 3722-
3724. (i) Matsumura, Y.; Ogura, K.; Kouchi, Y.; Iwasaki, F.; Onomura, O.
Org. Lett. 2006, 8, 3789-3792. (j) Iwasaki, F.; Onomura, O.; Mishima,
K.; Kanematsu, T.; Maki, T.; Matsumura, Y. Tetrahedron Lett. 2001, 42,
2525-2527. (k) Baudequin, C.; Chaturvedi, D.; Tsogoeva, S. B. Eur. J.
Org. Chem. 2007, 2623-2629.
1). Among the aliphatic amide substituents, 1e was optimal
producing the products with 44% ee (Table 1, entry 5). Bulky
substituents, like the cyclohexyl, tert-butyl, and adamantyl
groups, gave slightly lower enantioselectivities (Table 1, entries
1-3). The phenyl substituent also resulted in a good enanti-
oselectivity of 46% ee (Table 1, entry 6). Introducing bulky
substituents onto the phenyl ring resulted in a much lower ee
value (Table 1, entry 7).
On the basis of the above studies, we confirmed that
formamides derived from the amino acid and amine could
catalyze the addition of TMSCN to in situ generated imines.
We speculated that an additional formyl and the changed chiral
environment of C2-symmetric bisformamides might be more
advantageous. Therefore, a set of bisformamides 2a-e were
synthesized (Figure 2) and tested (Table 2) which were first
developed and applied to allylation of aldimines with allyl-
trichlorosilane by Tsogoeva et al.6k Indeed, the reactivity (Table
2, entries 1-5) and enantioselectivity (Table 2, entries 1 and
7716 J. Org. Chem., Vol. 72, No. 20, 2007