80
B. Wrackmeyer et al. · 1,2-Hydroboration of Alkyn-1-yl(chloro)silanes
of 12a, the reaction was carried out at the same temperature 9-BBN). – EI-MS: m/z (%) = 336 (28) [M+], 279 (7) [M+
–
in a sealed NMR tube using benzene as the solvent, and the C4H9], 266 (5), 135 (8), 110 (100), 82 (65). 12b: 1H NMR
reaction was complete after 1 h. The yield of the products (300 MHz; C6D6): δ = 1.3 – 2.0 (m, 14H, 9-BBN), 7.8 (s,
was essentially quantitative.
3J(29Si,1H) = 33.2 Hz, 1H, =CH), 6.9 – 7.2 (m, 5H, Ph). –
8a: 1H NMR (300 MHz; CDCl3): δ = 2.4, 1.3 – 1.6, EI-MS: m/z (%) = 256 (1) [M+], 236 (23) [M+ – C8H14B],
1.0 (m, m, t, 9H, Bu), 1.4 – 1.8 (m, 14H, 9-BBN), 5.1 (s, 103 (100), 110 (32), 82 (48).
1J(29Si,1H) = 205.3 Hz, 1H, SiH), 7.3 (t, 3J(1H,1H) = 7.1 Hz,
X-ray structure determination of the alkene 11b
1H, =CH), 7.4 – 7.8 (m, 5H, SiPh). 8aꢀ: 1H NMR (300 MHz;
CDCl3): δ = 2.5, 1.3 – 1.6, 0.9 (m, m, t, 9H, Bu), 1.4 – 1.8 (m,
The X-ray structure determination of 11b was carried out
at 191(2) K on a single crystal selected at r. t. in perfluori-
nated oil [20] using a STOE IPDS II system equipped with
14H, 9-BBN), 5.2 (s, 1J(29Si, 1H) = 189.6 Hz, 1H, SiH), 7.1
3
(t, J(1H,1H) = 7.1 Hz, 1H, =CH), 7.4 – 7.8 (m, 5H, SiPh).
8b: 1H NMR (300 MHz; CDCl3): δ = 1.5 – 1.9 (m, 14H, 9-
BBN), 5.5 (s, 1J(29Si, 1H) = 237.5 Hz, 1H, SiH) 7.2 – 7.6
(m, 10H, SiPh, Ph), 8.2 (s, 3J(29Si,1H) = 20.4 Hz, 1H, =CH).
9a: 1H NMR (300 MHz; CDCl3): δ = 0.6 (s, 3H, SiMe), 2.2,
1.4, 1.3, 0.7 (m, m, m, t, 9H, Bu), 1.5 – 1.8 (m, 14H, 9-BBN),
6.9 (t, 3J(1H,1H) = 7.2 Hz, 1H, =CH) and 7.2 – 7.6 (m, 5H,
SiPh). 9b: Yield after recrystalisation from pentane at r. t.
˚
an Oxford Cryostream low-temperature unit; λ = 0.71069 A,
Mr = 399.22, monoclinic, space group P21/n, a = 6.5500(4),
◦
˚
b = 22.9790(16), c = 13.8360(10) A, β = 95.305(5) , V =
2073.6(2) A , Z = 4, µ(Mo Kα) = 0.374 mm−1, F(000) =
3
˚
840 e, crystal size: 0.87×0.32×0.28 mm3, θ range for data
collection: 1.72 – 25.70◦, hkl ranges: −7 ≤ h ≤ 7, −27 ≤
k ≤ 27, −16 ≤ l ≤ 16, reflections collected: 26069, inde-
pendent reflections: 3096 (Rint = 0.0648), completeness to
θ = 25.70◦: 99.5 %, data/restraints/parameters: 3096/0/239.
Goodness-of-fit on F2: 1.001, final R indices (I ≥ 2σ(I)):
R1 = 0.0487, wR2 = 0.1277, R indices (all data): R1 = 0.0641,
wR2 = 0.1350, largest difference peak and hole in final dif-
◦
was 75 %; m. p. 58 – 60 C. – 1H NMR (300 MHz; C6D6)
δ = 0.3 (s, 3H, SiMe), 1.5 – 1.9 (m, 14H, 9-BBN), 8.0 (s,
3J(29Si, 1H) = 20.3 Hz, =CH), 7.0 – 7.4 (m, 10H, SiPh, Ph).
10a: 1H NMR (300 MHz; C6D6): δ = 2.2, 1.2, 1.0, 0.7 (m, m,
m, t, 9H, Bu), 1.3 – 1.9 (m, 14H, 9-BBN), 7.2 (t, 3J (1H,1H) =
7.4 Hz, 1H, =CH), 7.1 – 7.7 (m, 10H, SiPh2). 10b: 1H NMR
(300 MHz; CDCl3): δ = 8.1 (s, 3J(29Si,1H) = 20.5 Hz, =CH),
1.1 – 1.7 (m, 14H, 9-BBN) and 6.8 – 7.5 (m, 15H, SiPh2, Ph).
11a: 1H NMR (300 MHz; CDCl3): δ = 2.1, 1.1, 1.0, 0.5 (m,
m, m, t, 9H, Bu), 1.4 – 1.6 (m, 14H, 9-BBN), 6.9 (t, 1H, =CH
3J(1H,1H) = 7.5 Hz) and 7.1 – 7.5 (m, 5H, SiPh). 11b: Yield
after recrystalisation from hexane/chloroform (4 : 1) at r. t.
was 80 %; m. p. 74 – 75 ◦C. – 1H NMR (300 MHz; CDCl3):
δ = 7.8 (s, 3J(29Si,1H) = 25.7 Hz, =CH), 1.0 – 2.0 (m, 14H,
9.BBN) and 6.8 – 7.4 (m, 10H, SiPh, Ph). 12a: 1H NMR
(300 MHz; C6D6): δ = 2.5, 1.1 – 1.3, 0.8 (m, m, t, 9H, Bu),
7.0 (t, 3J(1H,1H) = 7.8 Hz, 1H, =CH), 1.3 – 1.9 (m, 14H,
ference map: 0.858/−0.319 e A−3. Structure solution and
˚
refinement were accomplished using SIR97 [21], SHELXL-
97 [22] and WinGX [23].
CCDC 617200 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre
Acknowledgements
This work was supported by the Deutsche Forschungs-
gemeinschaft. E. K. thanks the DAAD, Germany, and HEC,
Pakistan, for a scholarship.
[1] R. Ko¨ster, Pure Appl. Chem. 1977, 49, 765.
[2] a) R. Ko¨ster, G. Seidel, R. Boese, B. Wrackmeyer,
Chem. Ber. 1987, 120, 669; b) R. Ko¨ster, G. Seidel,
B. Wrackmeyer, K. Horchler, D. Schlosser, Angew.
Chem. 1989, 101, 945; Angew. Chem. Int. Ed. Engl.
1989, 28, 918; c) R. Ko¨ster, G. Seidel, B. Wrackmeyer,
Chem. Ber. 1989, 122, 1825.
[3] a) M. Suginome, Y. Ohmori, Y. Ito, J. Am. Chem. Soc.
2001, 123, 4601; b) T. Kurahashi, T. Hata, H. Ma-
sai, H. Kitagawa, M. Shimizu, T. Hiyama, Tetrahedron
2002, 58, 5381.
6615; b) M. Jankowska, C. Pietraszuk, B. Marciniec,
M. Zaidlewicz, Syn. Lett. 2006, 1695; c) B. Marciniec,
M. Jankowska, C. Pietraszuk, Chem. Commun. 2005,
663; d) B. Marciniec (Ed.) Comprehensive Handbook
on Hydrosilylation, Pergamon, Oxford (U.K.) 1992.
[6] a) J. A. Soderquist, J. C. Colberg, L. DelValle, J. Am.
Chem. Soc. 1989, 111, 4873; b) K. Uchida, K. Utimoto,
H. Nozaki, J. Org. Chem. 1976, 41, 2941; c) K. Uchida,
K. Utimoto, H. Nozaki, Tetrahedron 1977, 33, 2987;
d) N. G. Bhat, A. Garza, Tetrahedron Lett. 2003, 44,
6833.
[4] a) M. Shimizu, T. Kurahashi, H. Kitagawa, T. Hiyama,
Org. Lett. 2003, 5, 225; b) M. Shimizu, H. Kitagawa,
T. Kurahashi, T. Hiyama, Angew. Chem. 2001, 113,
4413; Angew. Chem. Int. Ed. 2001, 40, 4283.
[7] a) B. Wrackmeyer, A. Badshah, E. Molla, A. Mot-
talib, J. Organomet. Chem. 1999, 584, 98; b) B. Wrack-
meyer, K. Shahid, S. Ali, Appl. Organomet. Chem.
2005, 19, 377.
[5] a) M. Jankowska, B. Marciniec, C. Pietraszuk, J. Cy-
tarska, M. Zaidlewicz, Tetrahedron Lett. 2004, 45,
[8] B. Wrackmeyer, W. Milius, M. H. Bhatti, S. Ali, J. Or-
ganomet. Chem. 2003, 669, 72.
Unauthenticated
Download Date | 7/19/19 11:26 AM