216
B. Olszewska et al. / Tetrahedron: Asymmetry 24 (2013) 212–216
0
0
J5,6b = 4.8, H-5, J6 b,5 ), 3.80 (t, 1H, J4,3 = 9.3, J4,5 = 9.2, H-4), 4.05 (dd,
ral ligand (0.055 mmol or 0.11 mmol) in THF (3 mL) for 0.5 h. This
solution was then added under argon to a Schlenk tube containing
the allylic carbonate 1a–h (1 mmol) dissolved in anhydrous THF
(3 mL). The solution was stirred at 25 °C (or 55 °C). After being stir-
red for the indicated time, the solvent was evaporated, and the res-
idue was purified by column chromatography on silica gel.
1H, J6 b,6 a = 12.0, J6 b,5 = 2.4, H-60b), 4.19 (dd, 1H, J6b,6a = 12.0,
0
0
0
0
J6b,5 = 4.8, H-6b), 4.37 (dd, 1H, J6 a,6 b = 12.0, J6 a,5 = 4.4, H-60a),
4.45 (dd, 1H, J6a,6b = 12.0, J6a,5 = 1.8, H-6a), 4.53 (d, 1H, J1’,2’ = 7.9,
0
0
0
0
00
H-1’), 4.69 (d, 1H, JNH,2 = 8.0, NH), 4.82 (t, 1H, J2,1 = 9.3, J2,3 = 9.3,
H-2), 4.94 (dd, 1H, J2 ,3 = 9.3, J2 ,1 = 7.9, H-20), 4.99 (d,1H,
JNH,1 = 9.3, NH), 5.09 (t, 1H, J4’,3’ = 9.6, J4’,5’ = 9.6, H-4’), 5.16 (t, 1H,
0
0
0
0
J3 ,2 = 9.3, J3 ,4 = 9.6, H-30,), 5.19 (t, 1H, J1,NH = 9.3, J1,2 = 9.3, H-1),
5.29 (t, 1H, J3,2 = 9.3, J3,4 = 9.3, H-3), 7.31–7.46 (m, 10H, 2C6H5).
13C NMR (150 MHz, CDCl3): d = 20.5, 20.6, 20.8, 20.9 (CH3, Ac),
24.4 (C-300), 25.4 (C-400), 27.3 (C-500), 34.2 (C-600), 41.1 (d, JC-
P = 11.8, C-100), 51.1 (d, JC-P = 16.5, C-200), 61.6 (C-60), 62.1 (C-6),
67.9 (C-4), 71.0 (C-2), 71.6 (C-20), 72.0 (C-50), 72.6 (C-3), 73.0 (C-
30), 74.3 (C-5), 76.3 (C-4), 80.1 (C-1), 100.6 (C-1’), 128.1, 128.2,
128.3, 128.5, 128.6, 129.00 (C6H5), 132.4 (d, J = 17.6, C6H5), 134.5
(d, J = 20.5, C6H5), 135.2 (d, J = 17.0, C6H5), 136.9 (d, J = 13.0,
C6H5), 155.1 (CO, Urea), 169.0, 169.3, 169.4, 170.2, 170.3, 170.5,
171.3 (CO, Ac). C45H57N2O18P (944.91): calcd C 57.20, H 6.08, N
2.96; found C 57.14, H 6.09, N 2.98.
0
0
0
0
Acknowledgement
This work was partly financed by the European Union within
the European Regional Development Fund (POIG.01.01.02-14-
102/09).
References
1. (a) Nakanura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127–2198; (b) Muzart, J.
Tetrahedron 2005, 61, 5955–6008; (c) Hyland, C. Tetrahedron 2005, 61, 3457–
3471; (d) Majumdar, K. C.; Chattopadhyay, B.; Maji, P. K.; Chattopadhyay, S. K.;
Samanta, S. Heterocycles 2010, 81, 517–584; (e) Sadig, J. E. R.; Willis, M. C.
Synthesis 2011, 1, 1–22.
2. (a) Cao, P.; Zhang, X. J. Am. Chem. Soc. 1999, 121, 7708–7709; (b) Fournier-
Nguefack, C.; Lhoste, P.; Sinou, D. J. Chem. Res. 1998, 105, 0610–0618; (c) Jiang,
L.; Burke, S. D. Org. Lett. 2002, 4, 3411–3414; (d) Burke, S. D.; Jiang, L. Org. Lett.
2001, 3, 1953–1955; (e) Zacuto, M. J.; Leighton, J. L. Org. Lett. 2005, 7, 5525–
5527; (f) Fournier-Nguefack, C.; Lhoste, P.; Sinou, D. Tetrahedron 1997, 53, 4362–
4553; (g) Keinan, E.; Seth, K. K.; Lamed, R. J. Am. Chem. Soc. 1986, 108, 3474–
3480; (h) Smith, A. B., III; Ohta, M.; Clark, W. M.; Leahy, J. W. Tetrahedron Lett.
1993, 34, 3033–3036; (i) Hansen, E. C.; Lee, D. Tetrahedron Lett. 2004, 45, 7151–
7155; (j) Uenishi, J.; Ohmi, M. Angew. Chem., Int. Ed. 2005, 44, 2756–2760; (k)
Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 9276–
9277; (l) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2004,
126, 11966–11983; (m) Labrosse, J.-R.; Poncet, C.; Lhoste, P.; Sinou, D.
Tetrahedron: Asymmetry 1999, 10, 1069–1078; (n) Labrosse, J.-R.; Lhoste, P.;
Sinou, D. Org. Lett. 2000, 2, 527–529; (o) Labrosse, J.-R.; Lhoste, P.; Sinou, D. J.
Org. Chem. 2001, 66, 6634–6642; (p) Trost, B. M.; Tenaglia, A. Tetrahedron Lett.
1988, 29, 2927–2930; (q) Suzuki, T.; Sato, O.; Hirama, M. Tetrahedron Lett. 1990,
31, 4747–4750; (r) Hervey, J. E.; Raw, S. A.; Taylor, R. J. K. Org. Lett. 2004, 6,
2611–2614; (s) Ma, S.; Zhao, S. J. Am. Chem. Soc. 1999, 121, 7943–7944; (t) Ma, S.
Acc. Chem. Res. 2003, 36, 701–712; (u) Muzart, J. J. Mol. Catal. A 2010, 319, 1–29;
(v) Daniels, D. S. B.; Thompson, A. L.; Anderson, E. A. Angew. Chem., Int. Ed. 2011,
50, 11506–11510.
4.4. Synthesis of 1,3,4,6-tetra-O-trimethylsilyl-2-deoxy-2-{[2-
(diphenylphosphino)benzoyl]imino}-a-D-glucopyranose L4
In a Schlenk tube under nitrogen, 2-amino-2-deoxy-1,3,3,6-tet-
ra-O-trimethylsilyl-
-glucopyranose7 (1 g, 2.1 mmol) and 2-
a-D
(diphenylphosphino)benzaldehyde (621 mg, 2.1 mmol) were stir-
red in toluene (40 mL) at 60 °C for 12 h. After concentration, the
residue was purified by flash chromatography on silica gel, eluting
with ethyl acetate/hexane, 5:1 (Rf = 0.82). Yellow oil, 1.2 g, 77%
yield, ½a 2D0
ꢂ
¼ þ41:6 (c 0.5, CHCl3); 1H NMR (600 MHz, CDCl3):
d = 0.10, 0.18, 0.25, 0.31 (4s, 36H, 4OSi(CH3)3), 3.25 (dd, 1H,
J = 9.4, 3.2, H-2), 3.71 (dd, 1H, J = 9.6, 8.6, H-4), 3.84–3.90 (m, 2H,
H-6, H-60), 3.99 (ddd, 1H, J = 9.6, 3.7, 2.8, H-5), 4.41 (dd, 1H,
J = 9.4, 8.6, H-3), 4.80 (d, 1H, J = 3.2, H-1), 7.35–7.52 (m, 13H,
C6H5), 8.34–8.36 (m, 1H, C6H5), 9.19 (d, 1H, J = 6.1, NCH). 13C
NMR (150 MHz, CDCl3): d = 0.0, 0.2, 1.1, 1.5 (4OSi(CH3)3), 62.5 (C-
6), 72.5, 72.8 (C-4, C-5), 74.6 (C-2), 77.0 (C-3), 95.4 (C-1), 127.3
(d, J = 4.4, C6H5), 128.4, 128.7, 128.8, 129.0, 129.1, 130.6, 133,7,
133.9, 134.0, 134.1, 134.2, 134.3, (C6H5), 136.2 (d, J = 5,6, C6H5),
136.7 (d, J = 9.9, C6H5), 138.0 (d, J = 18.8, C6H5), 139.7 (d, J = 17.8,
C6H5), 161.1 (d, J = 27.5, NCH). C37H58NO5PSi4 (740.18): calcd C
60.04, H 7.90, N 1.89; found C 60.01, H 7.86, N 1.96.
3. (a) Zawisza, A.; Sinou, D. Tetrahedron Lett. 2006, 47, 3271–3274; (b) Zawisza, A.;
Fenêt, B.; Sinou, D. Eur. J. Org. Chem. 2007, 2296–2309.
4. Tollabi, M.; Framery, E.; Goux-Henry, C.; Sinou, D. Tetrahedron: Asymmetry 2003,
14, 3329–3333.
´
5. Carbohydrate urea ligand L3 was obtained by Porwanski who soon publish a
paper on a series of carbohydrate urea ligands derived from cellobiose, lactose
and glucose.
6. Petö, C.; Batta, G.; Györgydeak, Z.; Sztaricskai, F. Liebigs Ann. Chem. 1991, 505–
507.
7. Irmak, M.; Groschner, A.; Boysen, M. M. K. Chem. Commun. 2007, 177–179.
4.5. General procedure for the Pd0-catalysed reaction
The catalytic system was prepared by stirring Pd2(dba)3
(22.9 mg, 0.025 mmol) and dppb (23.5 mg, 0.055 mmol) or the chi-