A. Yajima et al. / Tetrahedron Letters 48 (2007) 4601–4603
4603
5. (a) Galloway, L. D. Sci. Rep. Agr. Res. Inst., Pusa 1936,
1934–1935, 120–130; (b) Kouyeas, V. Ann. Inst. Phyto-
pathol. Benaki 1953, 7, 40–53.
6. (a) Stamps, D. J. Trans. Br. Mycol. Soc. 1953, 36, 255–259;
(b) Apple, J. L. Phytopathology 1959, 49, 37–43; (c)
Haasis, F. A.; Nelson, R. R. Plant Dis. Rep. 1963, 48, 705–
709; (d) Marx, D. H.; Haasis, F. A.; Nelson, R. R. J.
Elisha Mitchell Sci. Soc. 1965, 81, 75–76; (e) Brasier, C. M.
Trans. Br. Mycol. Soc. 1972, 58, 237–251; (f) Chang, S. T.;
Shepherd, C. J.; Pratt, B. H. Aust. J. Bot. 1974, 22, 669–
679; (g) Ko, W. H. J. Gen. Microbiol. 1978, 107, 15–18; (h)
Ko, W. H. J. Gen. Microbiol. 1983, 129, 1397–1401; (i)
Chern, L. L.; Tang, C. S.; Ko, W. H. Bot. Bull. Acad. Sin.
1999, 40, 79–85.
Figure 2. The dose-dependent increase of oospore formation in the A2
mating type of P. nicotianae induced by synthetic sample (ng/disc) in
comparison with natural hormone a1 (a1) at doses of 10 and 30 ng/
disc. Values are means of four replicates. C: control.
7. Qi, J.; Asano, T.; Jinno, M.; Matsui, K.; Atsumi, K.;
Sakagami, Y.; Ojika, M. Science 2005, 309, 1828.
8. Jung, S. H.; Yeo, M. S.; Kim, S. O.; Cheong, C. S. Bull.
Korean Chem. Soc. 1997, 18, 344–347.
9. All new compounds gave satisfactory spectral and ele-
mental analysis data (combustion and/or HRMS).
10. Van Middlesworth, F.; Wang, Y. F.; Zhou, B.; DiTullio,
D.; Sih, C. J. Tetrahedron Lett. 1985, 26, 961–964.
with doses of 50–450 ng/disk, for the A2 mating type of
P. nicotianae. The values for the natural product were
recorded at 10 and 30 ng/disk. The synthetic stereoiso-
meric mixture of 1 did exhibit oospore-inducing activity,
but its activity was estimated to be about five times
weaker than that of the natural product. This result indi-
cates that some stereoisomers of 1 show hormonal activ-
ity, but the other isomers do not inhibit activity.
´
11. Cherest, M.; Felkin, H.; Frajerman, C.; Lion, C.; Roussi,
G.; Swierczewski, G. Tetrahedron Lett. 1966, 875–879.
12. Properties of synthetic 2: colorless oil; IR (KBr) mmax
(cmÀ1) = 3545 (br s, –OH), 2940 (br s), 2355 (w), 1715 (s,
C@O), 1590 (s), 1485 (m), 1465 (m), 1395 (s), 1270 (s),
1175 (m), 1115 (s), 1070 (m), 1010 (m), 965 (w), 850 (m),
755 (s), 710 (w), 685 (m), 630 (w), 475 (w); 1H NMR
(400 MHz, CDCl3): d = 0.84 (m, 3H, 19-CH3), 1.03 (d,
J = 6.8 Hz, 3H, 17-CH3), 1.10–1.60 (m, 15H), 1.16 (s, 3H,
18-CH3), 1.17 (d, J = 6.8 Hz, 3H, 20-CH3), 1.77 (m, 1H, 2-
CHH), 1.94 (m, 1H, 15-CH), 2.20 (m, 1H, 2-CHH), 2.36–
2.57 (m, 2H, 5-CH2), 2.73 (sxt, J = 6.8 Hz, 1H, 3-H), 4.11
(dd, J = 6.0, 10.7 Hz, 1H, 16-CHH), 4.21 (dd, J = 6.8,
10.7 Hz, 1H, 16-CHH), 4.31 (br t, J = 6.3 Hz, 2H, 1-CH2),
7.57–7.92 (m, 8H, Ar-H); 13C NMR (100 MHz, CDCl3):
d = 16.9, 19.18, 19.21, 21.1, 26.7, 30.4, 31.3, 32.2, 32.3,
32.6, 33.9, 37.2, 37.3, 39.0, 41.9, 42.0, 43.01, 43.04, 63.2,
69.9, 72.5, 127.8, 128.0, 128.9, 129.2, 131.0, 131.56, 131.61,
165.6, 165.8, 213.7; HRMS (FAB): calcd. for
C34H4679Br2O6Na 731.1559, found 731.1556 [M+Na]+.
1H and 13C NMR spectra are in good accordance with
those of the reported natural product.
In summary, we achieved the first synthesis of a stereo-
isomeric mixture of hormone a1 (1). The synthetic mix-
ture was found to induce the formation of oospores.
Since the activity of synthetic 1 was about five times
weaker than that of the natural product, it was con-
cluded that some stereoisomers of 1 show hormonal
activity. The development of a stereoselective synthesis
of 1 and investigation of the relationship between stereo-
chemistry and biological activity are currently under
way.
Acknowledgment
13. Properties of synthetic 1: colorless oil; IR (KBr) mmax
(cmÀ1) = 3395 (br s, –OH), 2935 (br s), 2350 (w), 1705 (s,
C@O), 1465 (w), 1370 (w), 1055 (m), 565 (br m); 1H NMR
(400 MHz, CD3OD): d = 0.80 (d, J = 6.3 Hz, 3H, 19-
CH3), 0.82 (d, J = 6.8 Hz, 3H, 17-CH3), 0.98 (d,
J = 6.8 Hz, 3H, 20-CH3), 0.99 (m, 1H, 14-CHH) 1.04 (s,
3H, 18-CH3), 1.05 (m, 1H 8-CHH), 1.15–1.56 (m, 15H),
1.80 (m, 1H, 2-CHH), 2.45 (m, 2H, 5-CH2), 2.68 (sxt,
J = 6.8 Hz, 1H, 3-CH), 3.22 (dd, J = 6.8, 10.7 Hz, 1H, 16-
CHH), 3.32 (dd, J = 5.9, 10.7 Hz, 1H, 16-CHH), 3.43 (br
t, J = 6.8 Hz, 2H, 1-CH2); 13C NMR (100 MHz, CD3OD):
d = 16.9 (C-20), 17.1 (C-17), 19.9 (C-19), 22.3 (C-9,13),
26.9 (C-18), 31.7 (C-6), 33.6 (C-7), 35.0 (C-14), 36.7 (C-2),
36.9 (C-15), 38.6 (C-8), 40.0 (C-5), 43.0 (C-10,12), 44.0
(C-3), 60.6 (C-1), 68.4 (C-16), 73.4 (C-11), 217.5
(C-4); HRMS (FAB): calcd. for C20H40O4Na 367.2825,
We thank Dr. T. Tashiro (RIKEN) for MS
measurements.
References and notes
1. Fry, W. E.; Goodwin, S. B. Bioscience 1997, 47, 363–371.
2. Lane, C. R.; Beales, P. A.; Hughes, K. J. D.; Griffin, R. L.;
Munro, D.; Brasier, C. M.; Webber, J. F. Plant Pathol.
2003, 52, 414.
3. (a) Werrens, S.; Marwitz, R.; Man in’t Veld, W. A.; De
Cock, A. W. A. M.; Bonants, P. J. M.; De Weerdt, M.;
Themann, K.; Ilievea, E.; Baayen, R. P. Mycol. Res. 2001,
105, 1155–1165; (b) Rizzo, D. M.; Garbelotto, M.;
Davidson, J. M.; Slaughter, G. W.; Koike, S. T. Plant
Dis. 2002, 86, 205–214.
1
found 367.2823 [M+Na]+. H and 13C NMR spectra are
in good accordance with those of the reported natural
product.
4. Ashby, S. F. Trans. Br. Mycol. Soc. 1929, 14, 18–38.