Paper
Dalton Transactions
was found that the upconverted fluorescence intensities of the
different acceptors exhibited different dependence on the
DMSO fraction. The maximal TTA upconversion quantum
yields were measured to be 4.5%, 0.8%, and 0.7% for Os-phen/
DPA, Os-phen/perylene, and Os-phen/BPEA, respectively.
Thus, change of ligands in these Os(II) complexes not only
broadened the reported anti-Stokes shift, but also promoted
the TTA upconversion quantum yield. The present work pro-
7 B. Wang, B. Sun, X. Wang, C. Ye, P. Ding, Z. Liang, Z. Chen,
X. Tao and L. Wu, J. Phys. Chem. C, 2014, 118, 1417–1425.
8 A. Monguzzi, A. Oertel, D. Braga, A. Riedinger, D. K. Kim,
P. N. Knüsel, A. Bianchi, M. Mauri, R. Simonutti and
D. J. Norris, ACS Appl. Mater. Interfaces, 2017, 9, 40180–
40186.
9 H.-I. Kim, S. Weon, H. Kang, A. L. Hagstrom, O. S. Kwon,
Y.-S. Lee, W. Choi and J.-H. Kim, Environ. Sci. Technol.,
2016, 50, 11184–11192.
vides
a
synthetic tendency of Os(II)-based triplet
photosensitizers.
10 Q. Liu, T. Yang, W. Feng and F. Li, J. Am. Chem. Soc., 2012,
134, 5390–5397.
11 A. Nagai, J. B. Miller, P. Kos, S. Elkassih, H. Xiong and
D. J. Siegwart, ACS Biomater. Sci. Eng., 2016, 1, 1206–1210.
12 J. Zhao, W. Wu, J. Sun and S. Guo, Chem. Soc. Rev., 2013,
42, 5323–5351.
13 N. Yanai and N. Kimizuka, Acc. Chem. Res., 2017, 50, 2487–
2495.
Experimental
DPA, perylene, BPEA, and methylene blue were purchased
from Aladdin Reagent (Shanghai) Co., Ltd and used without
any further purification. The synthetic procedure and struc-
tural characterization of the photosensitizers are described in
the ESI.† Further details of the steady-state spectra, transient
spectra, TTA upconversion spectra, and the corresponding
kinetic measurements are also given in the ESI.†
14 J. Peng, X. Guo, X. Jiang, D. Zhao and Y. Ma, Chem. Sci.,
2016, 7, 1233–1237.
15 H. Kouno, T. Ogawa, S. Amemori, P. Mahato, N. Yanai and
N. Kimizuka, Chem. Sci., 2016, 7, 5224–5229.
16 S. Guo, L. Ma, J. Zhao, B. Küçüköz, A. Karatay, M. Hayvali,
H. G. Yaglioglu and A. Elmali, Chem. Sci., 2014, 5, 489–500.
17 J. Wang, Y. Lu, W. McCarthy, R. Conway-Kenny,
B. Twamley, J. Zhao and S. M. Draper, Chem. Commun.,
2018, 54, 1073–1076.
Conflicts of interest
There are no conflicts to declare.
18 Q. Zhou, M. Zhou, Y. Wei, X. Zhou, S. Liu, S. Zhang and
B. Zhang, Phys. Chem. Chem. Phys., 2017, 19, 1516–1525.
19 T. N. Singhrachford and F. N. Castellano, J. Phys. Chem. A,
2009, 113, 5912.
20 Y. Wei, M. Zheng, Q. Zhou, X. Zhou and S. Liu, Org. Biomol.
Chem., 2018, 16, 5598–5608.
21 Y. Wei, M. Zhou, Q. Zhou, X. Zhou, S. Liu, S. Zhang and
B. Zhang, Phys. Chem. Chem. Phys., 2017, 19, 22049–22060.
22 W. Wu, J. Zhao, J. Sun and S. Guo, J. Org. Chem., 2012, 77,
5305–5312.
23 K. Moor, J.-H. Kim, S. Snow and J.-H. Kim, Chem.
Commun., 2013, 49, 10829.
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (Grant No. 21873089, 21573208 and
21573210) and the National Key Basic Research Foundation of
China (Grant No. 2013CB834602). L. Chen is also grateful for
the financial support of the Educational Commission of Anhui
Province of China (Grant No. KJ2018A0491). DFT calculations
were performed on the supercomputing system in the
Supercomputing Center of the University of Science and
Technology of China.
24 R. Zhang, Y. Yang, S. Yang, V. S. P. K. Neti, H. Sepehrpour,
P. J. Stang and K. Han, J. Phys. Chem. C, 2017, 121, 14975–
14980.
References
25 Z. Wang and J. Zhao, Org. Lett., 2017, 19, 4492–4495.
1 C. Ye, L. Zhou, X. Wang and Z. Liang, Phys. Chem. Chem. 26 D. Wei, F. Ni, Z. Zhu, Y. Zou and C. Yang, J. Mater. Chem. C,
Phys., 2016, 18, 10818–10835. 2017, 5, 12674–12677.
2 A. Haefele, J. Blumhoff, R. S. Khnayzer and 27 J. Han, Y. Jiang, A. Obolda, P. Duan, F. Li and M. Liu,
F. N. Castellano, J. Phys. Chem. Lett., 2012, 3, 299–303. J. Phys. Chem. Lett., 2017, 8, 5865–5870.
3 A. Monguzzi, R. Tubino, S. Hoseinkhani, M. Campione and 28 D. Liu, Y. Zhao, Z. Wang, K. Xu and J. Zhao, Dalton Trans.,
F. Meinardi, Phys. Chem. Chem. Phys., 2012, 14, 4322–4332. 2018, 47, 8619–8628.
4 S. Baluschev, T. Miteva, V. Yakutkin, G. Nelles, A. Yasuda 29 Y. Sasaki, S. Amemori, H. Kouno, N. Yanai and
and G. Wegner, Phys. Rev. Lett., 2006, 97, 143903. N. Kimizuka, J. Mater. Chem. C, 2017, 5, 5063–5067.
5 Y. Y. Cheng, B. Fückel, R. W. MacQueen, T. Khoury, 30 S. Amemori, Y. Sasaki, N. Yanai and N. Kimizuka, J. Am.
R. G. Clady, T. F. Schulze, N. J. Ekins-Daukes, Chem. Soc., 2016, 138, 8702–8705.
M. J. Crossley, B. Stannowski, K. Lips and T. W. Schmidt, 31 H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi,
Energy Environ. Sci., 2012, 5, 6953. Nature, 2012, 492, 234–238.
6 S. P. Hill and K. Hanson, J. Am. Chem. Soc., 2017, 139, 32 W. L. Tsai, M. H. Huang, W. K. Lee, Y. J. Hsu, K. C. Pan,
10988–10991.
Y. H. Huang, H. C. Ting, M. Sarma, Y. Y. Ho, H. C. Hu,
Dalton Trans.
This journal is © The Royal Society of Chemistry 2019