nation, using iodomethylzinc with C2-symmetric disulfonamide
ligands5 and Ti-taddolates.6
Tetrazolic Acid Functionalized Dihydroindol:
Rational Design of a Highly Selective
Cyclopropanation Organocatalyst
An increasingly important reaction type features a nucleophile
undergoing intermolecular Michael addition forming an enolate
followed by intramolecular ring closure accompanied by loss
of leaving group either present on the Michael acceptor or at
the nucleophile furnishing cyclopropanated product.7 This
reaction type is classified as a Michael initiated ring closure
(MIRC) reaction. The most commonly employed nucleophiles
in MIRC are R-halocarbanions,8 sulfur ylides,9 phosphorus
ylides,10 arsenium ylides,11 and telleronium ylides12 allowing a
range of structurally divergent substrates to be reacted, thus
creating a plethora of cyclopropane architectures.
In an important paper Ley et al. disclosed an intermolecular
asymmetric organocatalyzed cyclopropanation catalyzed by
quinine alkaloids.13 The reaction incorporates R-halocarbonyls,
R,â-unsaturated ketones, or esters coupled with an external base.
In another seminal paper, published by MacMillan et al., (S)-
(-)-indoline-2-carboxylic acid catalyzes the intermolecular
enantioselective organocatalytic cyclopropanation utilizing R,â-
unsaturated aldehydes as Michael acceptors, providing cyclo-
propated products in enantiomeric excesses up to 95%.14 The
proposed mechanistic postulate is based upon the concept of
directed electrostatic activation where the catalyst carboxylate
provides enantiofacial discrimination for the incoming nucleo-
phile accompanied by electrostatic association whereas selective
formation of a catalyst derived zwitterionic (Z)-iminum isomer
ensures a high degree of enantiocontrol. In line with our interest
in catalyst development for organocatalyzed reactions we
envisioned an improved catalyst that catalyzes the cyclopropa-
nation reaction with excellent diastereoselectivity and enantio-
selectivity. Second-generation catalyst, in which the carboxylic
acid of (S)-(-)-indoline-2-carboxylic acid is replaced by a
Antti Hartikka† and Per I. Arvidsson*,†,‡
Department of Biochemistry and Organic Chemistry, Uppsala
UniVersity, Box 576, SE-75123 Uppsala, Sweden, and DiscoVery
CNS & Pain Control, AstraZeneca R&D So¨derta¨lje,
S-151 85 So¨derta¨lje, Sweden
ReceiVed March 13, 2007
Herein we wish to report our development of an improved
catalyst (S)-(-)-indoline-2-yl-1H-tetrazole (1) for the enan-
tioselective organocatalyzed cyclopropanation of R,â-
unsaturated aldehydes with sulfur ylides. The new organo-
catalyst readily facilitates the enantioselective organocatalytic
cyclopropanation, providing cyclized product in excellent
diastereoselectivities ranging from 96% to 98% along with
enantioselectivities exceeding 99% enantiomeric excess for
all reacted R,â-unsaturated aldehydes. The new catalyst
provides the best results so far reported for intermolecular
enantioselective organocatalyzed cyclopropanation.
(3) (a) Winstein, S.; Sonnenberg, J.; De Vries, L. J. Am. Chem. Soc.
1959, 81. 6523. (b) Winstein, S.; Sonnenberg, J. J. Am. Chem. Soc. 1961,
83, 3235. (c) Hoveyda, A. H.; Fu, G. C. Chem. ReV. 1993, 93, 1307. (d)
Corey, E. J.; Virgil, S. C. J. Am. Chem. Soc. 1990, 112, 6429. (e) Charette,
A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966.
(4) (a) Charette, A. B.; Coˆte´, B.; Marcoux, J.-F. J. Am. Chem. Soc. 1991,
113, 8166. (b) Mash, F. A.; Nelson, K. A. J. Am. Chem. Soc. 1985, 107,
8256. (c) Seebach, D.; Stucky, G. Angew. Chem., Int. Ed. 1988, 27, 1351.
(5) (a) Imai, N.; Sakamoto, K.; Takahashi, H.; Kobayashi, S. Tetrahedron
Lett. 1994, 35, 7045. (b) Imai, N.; Takahashi, H.; Kobayashi, S. Chem.
Lett. 1994, 177. (c) Denmark, S. E.; O’Connor, S. P.; Wilson, S. R. Angew.
Chem., Int. Ed. 1998, 37, 1149. (d) Denmark, S. E.; O’Connor, S. P. J.
Org. Chem. 1997, 62, 584.
(6) (a) Charette, A. B.; Brochu, C. J. Am. Chem. Soc. 1995, 117, 11367.
(b) Charette, A. B.; Molinaro, C.; Brochu, C. J. Am. Chem. Soc. 2001,
123, 12168. (c) A recent paper reported on Enantioselective Cyclopropa-
nation with TADDOL-Derived Phosphate Ligands, see: Charette, A. B.;
Voituriez, A. AdV. Synth. Catal. 2006, 348, 16-17, 2363.
(7) (a) Artaud, I.; Seyden-Penne, J.; Viout, P. Synthesis 1980, 34. (b)
Hudlicky, T.; Radesca, L.; Luna, H.; Anderson, F. E. J. Org. Chem. 1986,
51, 4746. (c) Caine, D. Tetrahedron 2001, 57, 2643.
(8) Hakam, K.; Thielman, M.; Thielman, T.; Winterfeldt, E. Tetrahedron
1987, 43, 2035.
(9) (a) Krollpfeiffer, F.; Hartmann, H. Chem. Ber. 1950, 83, 90. (b) Corey,
E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1962, 84, 867. (c) Corey, E. J.;
Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353.
(10) Bestmann, H. J.; Seng, F. Angew. Chem. 1962, 74, 154.
(11) Huang, Y.-Z.; Shen, Y. AdV. Organomet. Chem. 1982, 20, 115.
(12) Huang, Y.-Z.; Yong, T.; Zhou, Z.-L. Tetrahedron 1998, 54, 1667.
(13) Papageorgiou, C. D.; Cubillo de Dios, M. A.; Ley, S. V.; Gaunt,
M. J. Angew. Chem., Int. Ed. 2004, 43, 4641.
(14) Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127,
3240.
The cyclopropane unit is a frequently encountered structural
unit in many naturally occurring compounds. Synthetic meth-
odology enabling the construction of these highly strained
systems was thoroughly explored in the middle of the 20th
century whereas the enantioselective construction of diversely
substituted cyclopropane units has gained widespread interest
during the last 20 years.1
Early development in stereospecific cyclopropanation utilized
a Simmons-Smith type of process, in which iodomethylzinc
reagents2 generated by different methods allowed the enantio-
selective cyclopropanation of structurally diverse cyclic and
acyclic alkene systems to be carried out by utilizing the chiral
pool,3 chiral auxiliaries,4 and catalytic asymmetric cyclopropa-
† Uppsala University.
‡‡‡
‡ Discovery CNS & Pain Control, AstraZeneca R&D So¨derta¨lje.
(1) A thorough review has been published on the topic: Lebel, H.;
Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. ReV. 2003, 103, 977.
(2) (a) Hennion, G. F.; Sheehan, J. J. J. Am. Chem. Soc. 1949, 71, 1964.
(b) Wittig, G.; Wingler, F. Justus Liebigs Ann. Chem. 1961, 650, 18. (c)
Wittig, G.; Schwarzenbach, K. Angew. Chem. 1959, 71, 652. (d) Takai,
K.; Kakiuchi, T.; Utimoto, K. J. Org. Chem. 1994, 59, 2671.
10.1021/jo070519e CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/22/2007
5874
J. Org. Chem. 2007, 72, 5874-5877