Khramov and Bielawski
(1,3,5-trimethylbenzene) groups in 54-94% isolated yields.
Since imidazol-2-ylidenes are typically prepared via deproto-
nation of their more stable and readily accessible imidazolium
precursors,14 we also demonstrated that N-heterocyclic carbenes
(NHCs) can be generated in situ from their respective precursors
prior to azide coupling.
In many ways, the aforementioned NHC/azide coupling
reaction is similar to the Cu-catalyzed [3 + 2] Huisgen15
cycloaddition reaction between alkynes and azides, now com-
monly categorized under “click chemistry.”16 Both reactions:
(1) provide products in excellent yields, (2) are atom-economi-
cal, (3) proceed with relatively high rates, (4) exhibit good
functional group tolerance, and (5) utilize a relatively broad
range of substrates. Over a short time span, click chemistry has
found utility in a multitude of synthetic, biological, and materials
applications.17 Likewise, in an effort to expand this repertoire,
we demonstrated that the NHC/azide coupling reaction was
useful for the postpolymerization modification of polyolefins
containing pendant azido groups.18
We have recently launched a program that utilizes NHCs as
building blocks for polymer synthesis, with an emphasis on
preparing functional materials suitable for use in electronic
applications.19 In addition to the practical advantages discussed
above, the NHC/azide coupling reaction has two unique features
for this purpose: (1) chemical unsaturation is conserved as
reactants are converted to products and (2) the triazeno bridge
formed formally conjugates the two organic components to each
other (i.e., the imidazole ring and the organic fragment stemming
from the azide).
FIGURE 1. Triazene formation via coupling of a N-heterocyclic
carbene with an azide.
extremely reactive, and often flammable, which necessitates the
use of relatively sophisticated equipment and techniques for
safety and success. As a result, the scope of compatible
substrates and the range of associated applications for preparing
triazenes are restrictive. These limitations warrant the develop-
ment of new methods for accessing this important class of
compound.
Recently, we discovered a new, practical method for preparing
triazenes. In our initial communication,11 we reported that
addition of a N-heterocyclic carbene12 (NHC) to an organic azide
afforded a 1,3-disubstituted triazene in excellent yield (see
Figure 1).13 The coupling reaction was found to proceed rapidly
at room temperature (τ1/2 ∼ minutes) and showed good tolerance
toward a broad array of functional groups and structural
variations. For example, alkyl, aryl, acyl, and tosylated azides
were coupled to imidazol-2-ylidenes with N-substituents ranging
in size from relatively small methyl groups to bulky mesityl
(1) (a) Zollinger, H. Diazo Chemistry; VCH: Weinhein, 1994; Vol. 1.
(b) Smith, P. A. S. Open Chain Chain Nitrogen Compounds; W. A.
Benjamin: New York, 1966; Vol. 2. (c) Kimball, D. B.; Haley, M. M.
Angew. Chem., Int. Ed. 2002, 41, 3338. (d) Ang, H. G.; Koh, L. L.; Yang,
G. Y. J. Chem. Soc., Dalton Trans. 1996, 1573. (e) Saunders, K. H. The
Aromatic Diazo Compounds, 2nd ed.; Longmans, Green and Co.: New
York, 1949.
The primary purpose of this study was to explore the
feasibility of preparing triazenes that exhibit extensively delo-
(2) Rouzer, C. A.; Sabourin, M.; Skinner, T. L.; Thompson, E. J.; Wood,
T. O.; Chmurny, G. N.; Klose, J. R.; Roman, J. M.; Smith, R. H., Jr.;
Michejda, C. J. Chem. Res. Toxicol. 1996, 9, 172.
(3) (a) Moore, J. S.; Weinstein, E. J.; Wu, Z. Tetrahedron Lett. 1991,
32, 2465. (b) Nicolau, K. C.; Boddy, C. N. C.; Li, H.; Koumbis, A. E.;
Hughes, R.; Natarajan, S.; Jain, N. F.; Ramanjulu, J. M.; Bra¨se, S.; Soloman,
M. Chem. Eur. J. 1999, 5, 2602. (c) Wirschun, W.; Winkler, M.; Lutz, K.;
Jochims, J. C. J. Chem. Soc., Perkin Trans. 1 1998, 1755. (d) Wirschun,
W.; Jochims, J. C. Synthesis 1997, 233. (e) Wirschun, W.; Maier, G.-M.;
Jochims, J. C. Tetrahedron 1997, 53, 5755.
(14) (a) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am. Chem.
Soc. 1991, 113, 361. (b) Herrmann, W. A. Angew. Chem., Int. Ed. 2002,
41, 1291. (c) Hahn, F. E.; Wittenbecher, L.; Boese, R.; Bla¨ser, D. Chem.
Eur. J. 1999, 5, 1931.
(15) (a) Huisgen, R.; Blaschke, H. Tetrahedron Lett. 1964, 5, 1409. (b)
Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
(c) For a recent review, see: Bock, V. D.; Hiemstra, H.; van Maarseveen,
J. H. Eur. J. Org. Chem. 2006, 51.
(16) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int.
Ed. 2001, 40, 2004. (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
(4) (a) Jones, L., II; Schumm, J. S.; Tour, J. M. J. Org. Chem. 1997, 62,
1388. (b) Moore, J. S. Acc. Chem. Res. 1997, 30, 402.
(5) (a) Gross, M. L.; Blank, D. H.; Welch, W. M. J. Org. Chem. 1993,
58, 2104. (b) Jian, H.; Tour, J. M. J. Org. Chem. 2005, 70, 3396. (c)
Merkushev, E. B. Synthesis 1985, 1104. (d) Lunn, G.; Sansone, E. B.
Synthesis 1988, 923.
(6) Lippert, T.; Nuyken, O. Makromol. Chem., Rapid Commun. 1993,
13, 365.
(7) (a) Wanner, M. J.; Koch, M.; Koomen, G. J. J. Med. Chem. 2004,
47, 6875. (b) Hooper, D. L.; Pottie, I. R.; Vacheresse, M.; Baughan, K.
Can. J. Chem. 1998, 76, 125. (c) Bra¨se, S.; Dahmen, S.; Pfefferkorn, M. J.
Comb. Chem. 2000, 2, 710. (d) Wirshun, W.; Winkler, M.; Lutz, K.;
Jochims, J. C. J. Chem. Soc., Perkin Trans. 2 1998, 1755.
(8) Chen, B.; Flatt, A. K.; Jian, H.; Hudson, J. L.; Tour, J. M. Chem.
Mater. 2005, 17, 4832.
(17) For representative examples, see: (a) Diaz, D. D.; Punna, S.; Holzer,
P.; McPherson, A. K.; Sharpless, K. B.; Fokin, B. B.; Finn, M. G. J. Polym.
Sci., Part A: Polym. Chem. 2004, 42, 4392. (b) Wu, P.; Feldman, A. K.;
Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun, J.; Fre´chet, J. M.
J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 43, 3928.
(c) Joralemon, M. J.; O’Reilly, R. K.; Hawker, C. J.; Wooley, K. L. J. Am.
Chem. Soc. 2005, 127, 16892. (d) Lutz, J. F.; Borner, H. G.; Weichenhan,
K. Macromol. Rapid Commun. 2005, 38, 3558. (e) Opsteen, J. A.; van Hest,
J. C. M. Chem. Commun. 2005, 57. (f) Sumerlin, B. S.; Tsarevsky, N. V.;
Louche, G.; Lee, R. Y.; Matyjaszewski, K. Macromolecules 2005, 38, 7540.
(g) Parrish, B.; Breitenkamp, R. B.; Emrick, T. J. Am. Chem. Soc. 2005,
127, 7404. (h) Ladmiral, V.; Mantovani, G.; Clarkson, G. J.; Cauet, S.;
Irwin, J. L.; Haddleton, D. M. J. Am. Chem. Soc. 2006, 128, 4823. (i)
Thibault, R. J.; Takizawa, K.; Lowenheilm, P.; Helms, B.; Mynar, J. L.;
Fre´chet, J. M. J.; Hawker, C. J. J. Am. Chem. Soc. 2006, 128, 12084. (j)
Tejler, J.; Tullberg, E.; Frejd, T.; Leffler, H.; Nilsson, U. J. Carbohydr.
Res. 2006, 341, 1353. (k) Fernandez-Megia, E.; Correa, J.; Rodriguez-
Meizoso, I.; Riguera, R. Macromolecules 2006, 39, 2113. (l) Feldman, A.
K.; Colasson, B.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005,
127, 13444. (m) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200.
(n) Laurent, B. A.; Grayson, S. M. J. Am. Chem. Soc. 2006, 128, 4238. (o)
Vogt, A. P.; Sumerlin, B. S. Macromolecules 2006, 39, 5286. (p) Thibault,
R. J.; Takizawa, K.; Lowenheilm, P.; Helms, B.; Mynar, J. L.; Fre´chet, J.
M. J.; Hawker, C. J. J. Am. Chem. Soc. 2006, 128, 12084.
(9) Sadtchikova, E. V.; Morkushin, V. S. MendeleeV Commun. 2002, 2,
70.
(10) Kirk, K. L. J. Org. Chem. 1978, 43, 4381.
(11) Khramov, D. M.; Bielawski, C. W. Chem. Commun. 2005, 4958.
(12) For excellent reviews on N-heterocyclic carbenes, see: (a) Canal,
J. P.; Ramnial, T.; Dickie, D. A.; Clyburne, J. A. C. Chem. Commun. 2006,
1809. (b) Hahn, F. E. Angew. Chem., Int. Ed. 2006, 45, 1348. (c) Crabtree,
R. H. J. Organomet. Chem. 2005, 690, 5451. (d) Herrmann, W. A.; Ko¨cher,
C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2162. (e) Arduengo, A. J., III.
Acc. Chem. Res. 1999, 32, 913. (f) Bourissou, D.; Guerret, O.; Gabba¨ı, F.
P.; Bertrand, G. Chem. ReV. 2000, 100, 39. (g) Nair, V.; Bindu, S.;
Sreekumar, V. Angew. Chem., Int. Ed. 2005, 44, 1907.
(13) Previously, Winberg and Coffman reported that peraminoethylenes
react with azides to afford triazenes similar in structure to the compounds
reported herein, see: Winberg, H. E.; Coffman, D. D. J. Am. Chem. Soc.
1965, 87, 2776.
(18) Coady, D. J.; Bielawski, C. W. Macromolecules 2006, 39, 8895.
(19) (a) Boydston, A. J.; Williams, K. A.; Bielawski, C. W. J. Am. Chem.
Soc. 2005, 127, 12496. (b) Kamplain, J. W.; Bielawski, C. W. Chem.
Commun. 2006, 1727. (c) Boydston, A. J.; Rice, J. D.; Sanderson, M. D.;
Dykhno, O. L.; Bielawski, C. W. Organometallics 2006, 25, 6087.
9408 J. Org. Chem., Vol. 72, No. 25, 2007