1608
R. Dodda, C.-G. Zhao
LETTER
(8) For selected recent examples, see: (a) Tang, Z.; Jiang, F.;
Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu,
Y.-D. J. Am. Chem. Soc. 2003, 125, 5262. (b) Tang, Z.;
Yang, Z.-H.; Chen, X.-H.; Cun, L.-F.; Mi, A.-Q.; Jiang, Y.-
Z.; Gong, L.-Z. J. Am. Chem. Soc. 2005, 127, 9285.
(c) Samanta, S.; Liu, J.; Dodda, R.; Zhao, C.-G. Org. Lett.
2005, 7, 5321. (d) Luppi, G.; Cozzi, P. G.; Monari, M.;
Kaptein, B.; Broxterman, Q. B.; Tomanisi, C. J. Org, Chem.
2005, 70, 7418. (e) Wang, W.; Li, H.; Wang, J. Tetrahedron
Lett. 2005, 46, 5077. (f) Zheng, J.-F.; Li, Y.-X.; Zhang, S.-
Q.; Yang, S.-T.; Wang, X.-M.; Wang, Y.-Z.; Bai, J.; Liu, F.-
A. Tetrahedron Lett. 2006, 47, 7793. (g) Chen, J.-R.; Lu,
H.-H.; Li, X.-Y.; Cheng, L.; Wan, J.; Xiao, W.-J. Org. Lett.
2005, 7, 4543. (h) Cobb, A. J. A.; Shaw, D. M.;
uct 11f in 72% yield with a diastereomeric ratio of 60:40
(entry 6). The major diastereoisomer, which was deter-
mined to be syn,16 was obtained in 95% ee. The minor anti
diastereoisomer was obtained in 85% ee. Under these con-
ditions, cyclohexanone resulted in a 70% yield of the aldol
product 11g17 in an excellent diastereoselectivity (90:10,
entry 7). The major diastereoisomer, which was deter-
mined to be anti,17 was obtained in 88% ee. Similar results
were also obtained for 4-oxacyclohexanone (9h, entry 8)
and 4-thiacyclohexanone (9i, entry 9), except the ee
values are slightly inferior for the products of these two
substrates (80% and 81% ee, respectively).
Longbottom, D. A.; Gold, J. B.; Ley, S. V. Org. Biomol.
Chem. 2005, 3, 84.
(9) Tang, Z.; Cun, L.-F.; Cui, X. M. i. A.-Q.; Jiang, Y.-Z.; Gong,
L.-Z. Org. Lett. 2006, 8, 1263.
(10) For some isolated examples, see: (a) Tokuda, O.; Kano, T.;
Gao, W.-G.; Ikemoto, T.; Maruoka, K. Org. Lett. 2005, 7,
5103. (b) Suri, J. T.; Mitsumori, S.; Albertshofer, K.;
Tanaka, F.; Barbas, C. F. III J. Org. Chem. 2006, 71, 3822.
(c) Cardova, A.; Zou, W.; Dziedzic, P.; Ibrahem, I.; Reyes,
E.; Xu, Y. Chem. Eur. J. 2006, 12, 5383.
In conclusion, the direct aldol reaction of ethyl glyoxylate
and various ketones has been realized by using the novel
L-proline-derived dipeptide 5 as the organocatalyst. This
catalyst displays good to high enantioselectivities (up to
98% ee) and diastereoselectivities (up to 90% de), espe-
cially when six-membered cyclic ketones are used as the
substrates.
Acknowledgment
(11) (a) Samanta, S.; Zhao, C.-G. Tetrahedron Lett. 2006, 47,
3383. (b) Samanta, S.; Zhao, C.-G. J. Am. Chem. Soc. 2006,
128, 7224. (c) Dodda, R.; Zhao, C.-G. Org. Lett. 2006, 8,
4991. (d) Shen, Z.; Li, B.; Wang, L.; Zhang, Y. Tetrahedron
Lett. 2005, 46, 8785. (e) Guizzetti, S.; Benaglia, M.;
Pignataro, L.; Puglisi, A. Tetrahedron: Asymmetry 2006, 17,
2754. (f) Wu, Y.; Zhang, Y.; Yu, M.; Zhao, G.; Wang, S.
Org. Lett. 2006, 8, 4417. (g) Raj, M.; Vishnumaya; Ginotra,
S. K.; Singh, V. K. Org. Lett. 2006, 8, 4097.
(12) (a) Yoshinori, I.; Shuji, T.; Takeshi, K. J. Antibiotics 1986,
39, 1378. (b) Tang, Z.; Yang, Z.-H.; Cun, L.-F.; Gong, L.-Z.;
Mi, A.-Q.; Jiang, Y.-Z. Org. Lett. 2004, 6, 2285.
(13) Fache, F.; Piva, O. Tetrahedron: Asymmetry 2003, 14, 139.
(14) Gondi, V. B.; Gravel, M.; Rawal, V. H. Org. Lett. 2005, 7,
5657.
The authors thank the Welch Foundation (Grant No. AX-1593) and
the NIH-MBRS program (Grant No. S06 GM08194) for the finan-
cial support of this research.
References and Notes
(1) For a review, see: a-Hydroxy Acids in Enantioselective
Synthesis; Copolla, G. M.; Schuster, H. F., Eds.; Wiley-
VCH: Weinheim, 1997.
(2) (a) Leblond, C.; Wang, J.; Liu, J.; Andrews, A. T.; Sun, Y.-
K. J. Am. Chem. Soc. 1999, 121, 4920. (b) Carpentier, J.-F.;
Mortreux, A. Tetrahedron: Asymmetry 1997, 8, 1083.
(c) Brown, H. C.; Cho, B. T.; Park, W. S. J. Org. Chem.
1986, 51, 3396. (d) Wang, C.-J.; Sun, X.; Zhang, X. Synlett
2006, 1169.
(15) General Experimental Procedure
To a stirred solution of ethyl glyoxylate (51.0 mg, 0.5 mmol)
and the ketone (0.25 mL) in CHCl3 (0.25 mL) was added
catalyst 5 (13.6 mg, 0.05 mmol) at –10 °C. The reaction
mixture was stirred at this temperature for 24–72 h. The
solvent was then evaporated under vacuum and the residue
was purified by flash chromatography (EtOAc–hexane, 1:2)
over silica gel to furnish the desired secondary a-hydroxy-
carboxylate as a pure compound. 1H NMR and 13C NMR
data of new compounds are collected below.
(3) Xiang, Y. B.; Snow, K.; Belley, M. J. Org. Chem. 1993, 58,
993.
(4) (a) Zhu, D.; Stearns, J. E.; Ramirez, M.; Hua, L. Tetrahedron
2006, 62, 4535. (b) Ishihara, K.; Nakajima, N.; Yamaguchi,
H.; Hamada, H.; Uchimura, Y.-S. J. Mol. Catal. B: Enzym.
2001, 15, 101. (c) Nakamura, K.; Inoue, K.; Ushio, K.; Oka,
S.; Ohno, A. J. Org. Chem. 1988, 53, 2589.
(5) (a) Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33,
325. (b) Lalic, G.; Aloise, A. D.; Shair, M. D. J. Am. Chem.
Soc. 2003, 125, 2852. (c) Kudyba, I.; Raczko, J.; Jurczak, J.
J. Org. Chem. 2004, 69, 2844.
(6) (a) Kalaritis, P.; Regenye, R. W.; Partridge, J. J.; Ciffen, D.
L. J. Org, Chem. 1990, 55, 812. (b) Huang, S.-H.; Tsai, S.-
W. J. Mol. Catal. B: Enzym. 2004, 28, 65. (c) Liljeblad, A.;
Kanerva, L. T. Tetrahedron: Asymmetry 1999, 10, 4405.
(7) (a) List, B.; Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc.
2000, 122, 2395. (b) Notz, W.; List, B. J. Am. Chem. Soc.
2000, 122, 7386. (c) List, B.; Pojarliev, P.; Castello, C. Org.
Lett. 2001, 3, 5773. (d) Sakthivel, K.; Notz, W.; Bui, T.;
Barbas, C. F. III J. Am. Chem. Soc. 2001, 123, 5260.
(e) Pidathala, C.; Hoang, L.; Vignola, N.; List, B. Angew.
Chem. Int. Ed. 2003, 42, 2785. (f) List, B. Synlett 2001,
1675. (g) Martin, H. J.; List, B. Synlett 2003, 1901. For
reviews, see: (h) List, B. Tetrahedron 2002, 58, 5573.
(i) List, B. Acc. Chem. Res. 2004, 37, 548. (j) Notz, W.;
Tanaka, F.; Barbas, C. F. III Acc. Chem. Res. 2004, 37, 580.
Compound 5: 1H NMR (500 MHz, CDCl3): d = 0.83 (t,
J = 7.5 Hz, 6 H), 1.90–1.92 (m, 1 H), 1.99 (s, 3 H), 2.06–2.11
(m, 2 H), 2.96 (d, J = 3.0 Hz, 2 H), 3.79 (t, J = 8.0 Hz, 1 H),
4.12 (q, J = 4.5 Hz, 1 H), 5.08 (d, J = 2.5 Hz, 1 H), 8.10 (d,
J = 9.5 Hz, 1 H, CONH) ppm. 13C NMR (125 MHz, CDCl3):
d = 18.3, 19.8, 21.7, 31.1, 37.6, 53.0, 57.2, 59.9, 76.6, 170.8,
173.5, 173.7 ppm.
Compound 8: 1H NMR (500 MHz, CDCl3): d = 0.72–0.98
(m, 6 H), 2.00–2.40 (m, 3 H), 3.42–3.79 (m, 3 H), 4.38–4.61
(m, 3 H), 5.00–5.33 (m, 4 H), 7.20–7.52 (m, 11 H) ppm. 13
C
NMR (125 MHz, CDCl3): d = 17.8, 19.2, 31.4, 37.3 (40.0),
54.8 (56.0), 57.7 (57.3), 59.3 (59.7), 67.2, 67.7, 70.1 (69.5),
128.1 (2 C), 128.3 (2 C), 128.6 (2 C), 128.7 (2 C), 128.8 (2
C), 135.7, 136.6, 156.4 (155.6), 171.9, 172.7 (171.6) ppm.
Compound 11c: 1H NMR (500 MHz, CDCl3): d = 0.91 (t,
J = 8.3 Hz, 3 H), 1.28 (t, J = 7.0 Hz, 3 H), 1.20 (q, J = 7.3
Hz, 2 H), 2.43 (t, J = 7.5 Hz, 2 H), 2.87 (dd, J = 17.5, 6.5 Hz,
1 H), 2.94 (dd, J = 17.5, 4.0 Hz, 1 H), 4.21–4.30 (m, 2 H),
Synlett 2007, No. 10, 1605–1609 © Thieme Stuttgart · New York