One-Pot Synthesis of N-Aryl-Nicotinamides and Diarylamines
2000, 41, 4541; c) L. El Kaïm, L. Grimaud, X. F. Le Goff, A.
Schiltz, Org. Lett. 2011, 13, 534; d) C. Dey, D. Katayev,
K. E. O. Ylijoki, E. P. Kündig, Chem. Commun. 2012, 48,
10957.
a) L. El Kaïm, L. Grimaud, J. Oble, Angew. Chem. Int. Ed.
2005, 44, 7961; Angew. Chem. 2005, 117, 8175; b) L. El Kaïm,
M. Gizolme, L. Grimaud, Org. Lett. 2006, 8, 5021; c) L.
El Kaïm, M. Gizolme, L. Grimaud, J. Oble, J. Org. Chem.
2007, 72, 4169; d) E. Martinand-Lurin, A. Dos Santos, L.
El Kaïm, L. Grimaud, P. Retailleau, Chem. Commun. 2014, 50,
2214.
active analogues in agrochemical and medicinal chemistry.
Further studies on the synthetic application and biological
evaluations of the analogue library are underway in our
laboratory.
[5]
Experimental Section
General Procedure for the Synthesis of 3: tBuOK (112 mg,
1.0 mmol) was added to a solution of 4a–4m (0.4 mmol) in DMF
(2 mL), and the mixture was stirred at 120 °C for 1–12 h. After
completion of the reaction monitored by TLC, H2O (10 mL) was
added and the mixture was extracted with EtOAc (3ϫ 10 mL). The
combined organic layers were washed with brine, dried with
Na2SO4, filtered, and evaporated in vacuo. The crude product was
purified by column chromatography on silica gel to get the desired
product 3.
[6]
[7]
Y. Wang, J. Zheng, P. Liu, W. Wang, W. Zhu, Marine Drugs
2011, 9, 1368.
For selected medicinal substrates: a) J. Zimmermann, E. Buch-
dunger, H. Mett, T. Meyer, N. B. Lydon, Bioorg. Med. Chem.
Lett. 1997, 7, 187; b) G. J. Warren, C. W. Andrews, A.-M. Cap-
elli, B. Clarke, J. LaLonde, M. H. Lambert, M. Lindvall, N.
Nevins, S. F. Semus, S. Senger, G. Tedesco, I. D. Wall, J. M.
Woolven, C. E. Peishoff, M. S. Head, J. Med. Chem. 2006, 49,
5912; c) K. S. Kim, L. Zhang, R. Schmidt, Z.-W. Cai, D. Wei,
D. K. Williams, L. J. Lombardo, G. L. Trainor, D. Xie, Y.
Zhang, Y. An, J. S. Sack, J. S. Tokarski, C. Darienzo, A. Kam-
ath, P. Marathe, Y. Zhang, J. Lippy, R. Jeyaseelan, Sr. B. Waut-
let, B. Henley, J. Gullo-Brown, V. Manne, J. T. Hunt, J. Farg-
noli, R. M. Borzilleri, J. Med. Chem. 2008, 51, 5330; d) J.
Ghosn, M.-L. Chaix, C. Delaugerre, AIDS Rev. 2009, 11, 165;
e) H. Cheng, Y. Chang, L. Zhang, J. Luo, Z. Tu, X. Lu, Q.
Zhang, J. Lu, X. Ren, K. Ding, J. Med. Chem. 2014, 57, 2692.
a) P.-Y. Coqueron, M.-C. Grosjean-Cournoyer, P. Desbordes,
P. Genix, B. Hartmann, A. Mattes, K. Kunz, R. Fischer, O.
Gaertzen, O. Ort, D. Mansfield, A. Villier, PCT WO
2008003746 A1; b) G. Scalliet, J. Bowler, T. Luksch, L. Kirch-
hofer-Allan, D. Steinhauer, K. Ward, M. Niklaus, A. Verras,
M. Csukai, A. Daina, R. Fonné-Pfister, Plos One 2012, 7,
e35429; c) J. Wu, S. Kang, L. Luo, Q. Shi, J. Ma, J. Yin, B.
Song, D. Hu, S. Yang, Chem. Cent. J. 2013, 7, 64; d) Y.-H. Ye,
L. Ma, Z.-C. Dai, Y. Xiao, Y.-Y. Zhang, D.-D. Li, J.-X. Wang,
H.-L. Zhu, J. Agric. Food Chem. 2014, 62, 4063; e) I. Mallik,
S. Arabiat, J. S. Pasche, M. D. Bolton, J. S. Tatel, N. C. Gudme-
stad, Phytopathology 2014, 104, 40.
For selected examples of amidation reactions, see: a) K. N. Ku-
mar, K. Sreeramamurthy, S. Palle, K. Mukkanti, P. Das, Tetra-
hedron Lett. 2010, 51, 899; b) C.-Y. Shi, E.-J. Gao, S. Ma, M.-
L. Wang, Q. T. Liu, Bioorg. Med. Chem. Lett. 2010, 20, 7250;
c) L. Shi, Z.-L. Li, Y. Yang, Z.-W. Zhu, H.-L. Zhu, Bioorg.
Med. Chem. Lett. 2011, 21, 121; d) L. D. Tran, I. Popov, O.
Daugulis, J. Am. Chem. Soc. 2012, 134, 18237.
For selected examples of transamidation, see: a) J. Chen, G.
Ling, Z. Yu, S. Wu, X. Zhao, X. Wu, S. Lu, Adv. Synth. Catal.
2004, 346, 1267; b) S. C. Ghosh, C. C. Li, H. C. Zen, J. S. Y.
Ngiam, A. M. Seayad, A. Chen, Adv. Synth. Catal. 2014, 356,
475.
For selected examples of transition-metal coupling reactions,
see: a) B. P. Fors, K. Dooleweerdt, Q. Zeng, S. L. Buchwald,
Tetrahedron 2009, 65, 6576; b) K. Dooleweerdt, B. P. Fors, S. L.
Buchwald, Org. Lett. 2010, 12, 2350; c) F. Ma, X. Xie, L.
Zhang, Z. Peng, L. Ding, L. Fu, Z. Zhang, J. Org. Chem. 2012,
77, 5279; d) N. Panda, R. Mothkuri, D. K. Nayak, Eur. J. Org.
Chem. 2014, 8, 1602.
a) O. Reinaud, P. Capdevielle, M. Maumy, J. Chem. Soc. Perkin
Trans. 1 1991, 2129; b) H. Yao, Z.-B. Li, D.-S. Shin, L. Y.
Wang, J.-Z. Zhou, H.-B. Qiao, X. Tian, X.-Y. Ma, H. Zuo,
Synlett 2010, 483; c) Y. Liu, C. Chu, A. Huang, C. Zhan, Y.
Ma, C. Ma, ACS Comb. Sci. 2011, 13, 547; d) M. Mizuno, M.
Yamano, Org. Lett. 2005, 7, 3629; e) R. Sanz, V. Guilarte, N.
García, Org. Biomol. Chem. 2010, 8, 3860; f) V. Guilarte, M. P.
Castroviejo, P. García-García, M. A. Fernández-Rodríguez, R.
Sanz, J. Org. Chem. 2011, 76, 3416; g) M. O. Kitching, T. E.
Hurst, V. Snieckus, Angew. Chem. Int. Ed. 2012, 51, 2925; An-
gew. Chem. 2012, 124, 2979.
One-pot Procedure on a Gram Scale for the Synthesis of 3d, 3g, and
3k: K2CO3 (3.45 g, 25 mmol) was added to a solution of 1a (1.57 g,
10 mmol) and 2 (12 mmol) in DMF (50 mL), and the mixture was
stirred at 80 °C for 12 h. tBuOK (2.8 g, 25 mmol) was added and
the mixture was stirred at 120 °C for a further 1 h. After comple-
tion of the reaction monitored by TLC, H2O (150 mL) was added
and the mixture was extracted with EtOAc (3ϫ 150 mL). The com-
bined organic layers were washed with brine, dried with Na2SO4,
filtered, and evaporated in vacuo. The crude product was purified
by recrystallization from petroleum ether/ethyl acetate to get the
desired product 3 d, 3g or 3k.
[8]
Acknowledgments
The work was supported by National Natural Science Foundation
of China (Grant No. 21202112), Ph. D. Programs Foundation of
Ministry of Education of China (20123201120019) and PAPD (A
Project Funded by the Priority Academic Program Development
of Jiangsu Higher Education Institutions).
[9]
[1] a) W. E. Truce, E. William, E. M. Kreider, W. W Brand, Org.
React. 1970, 18, 99; b) T. J. Snape, Chem. Soc. Rev. 2008, 37,
2452; c) S. Xia, L.-Y. Wang, H. Zuo, Z.-B. Li, Curr. Org. Synth.
2013, 10, 935.
[10]
[11]
[2] a) D. M. Schmidt, G. E. Bonvicino, J. Org. Chem. 1984, 49,
1664; b) L. K. Casillas, C. A. Townsend, J. Org. Chem. 1999,
64, 4050; c) J. Xiang, L. Zheng, F. Chen, Q. Dang, X. Bai, Org.
Lett. 2007, 9, 765; d) C. Ma, Q. Zhang, K. Ding, L. Xin, D.
Zhang, Tetrahedron Lett. 2007, 48, 7476; e) I. Bouillon, J.
Zajícˇek, N. Pudelová, V. Krchnˇák, J. Org. Chem. 2008, 73,
9027; f) J. Xiang, L. Zheng, H. Xie, X. Hu, Q. Dang, X. Bai,
Tetrahedron 2008, 64, 9101; g) H. Zuo, Z.-B. Li, F.-K. Ren,
J. R. Falck, M. Lijuan, C. Ahn, D.-S. Shin, Tetrahedron 2008,
64, 9669; h) O.-I. Patriciu, A.-L. Fînaru, S. Massip, J.-M. Leger,
C. Jarry, G. Guillaumet, Org. Lett. 2009, 11, 5502; i) M. O.
Kitching, T. E. Hurst, V. Snieckus, Angew. Chem. Int. Ed. 2012,
51, 2925; Angew. Chem. 2012, 124, 2979; j) X. Niu, B. Yang,
Y. Li, S. Fang, Z. Huang, C. Xie, C. Ma, Org. Biomol. Chem.
2013, 11, 4102; k) Y. Zhao, Y. Bai, Q. Zhang, Q. Chen, Q. Dai,
C. Ma, Tetrahedron Lett. 2013, 54, 3253.
[12]
[3] a) E. Bacque, M. El Qacemi, S. Z. Zard, Org. Lett. 2005, 7,
3817; b) M. El Qacemi, L. Ricard, S. Z. Zard, Chem. Commun.
2006, 42, 4422; c) B. Hawkins, V. L. Paddock, N. Tolle, S. Z.
Zard, Org. Lett. 2012, 14, 1020.
[4] a) D. M. Snyder, W. E. Truce, J. Am. Chem. Soc. 1979, 101,
5432; b) W. R. Erickson, M. J. McKennon, Tetrahedron Lett.
Eur. J. Org. Chem. 2015, 3048–3052
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3051