are known to possess inhibitory activity toward Hep G2, Hep
G2,2,15, and P-388 tumor cell lines.4b
metallic reagent to 7 followed by trapping the resulting
enolate with chlorotrimethyl silane and subsequent iodination
could afford iodoketone 6. Radical cyclization of 6 and
further synthetic manipulations could provide 5. Reduction
of compound 5 followed by protection of the alcohol group
and ozonolysis could render hydrindanone 4 (Figure 2).
Additonally, they exhibit inhibitory activities against
arachidonic acid and collagen induced platelet aggregation.6a
Thus the novel structural traits coupled with the biological
activities have attracted organic chemists to develop new
synthetic routes to these molecules. While the total synthesis
of bakkenolide A7 and the closely related analogues, that is,
(-)-homogynolide A8a-c (1b) and B8d-f (1c), (+)-palmosalide
C8g (1d), (-)-acetoxyfukinanolide8h (1e), (-)-7-epibakkeno-
lide-A8i (1f) (Figure 1) are well documented, synthesis of
the C1, C9 dioxygenated analogues bakkenolide III, B, C,
D, E, H, L, V, and X (2a-i) are hitherto less known. Their
total syntheses have been reported only by Depre´s et al. via
the cycloadditon of dichloroketene with dimethylcyclo-
hexenes.9 In that report, bakkenolide III is a pivotal
intermediate as it was elaborated into a series of bakkenolides
such as 2b, 2c, and 2f-i.9
Herein, we report the total synthesis of bakkenolide III
(2a) via the highly efficient R-carbonyl radical cyclization
protocol established in our laboratories.10 We envisaged a
highly functionalized hydrindanone core bearing a propar-
gylic ester 3 as a potential precursor to (-)-bakkenolide III
(2a), which in turn could be obtained from the hydrindanone
4. Commercially available (S)-(+)-carvone (8) could give
rise to enone 7. Conjugate addition of the suitable organo-
Figure 2. Retrosynthetic analysis of 2a.
Our synthetic efforts commenced with the reduction of
(S)-(+)-carvone (8) with lithium in liquid ammonia.11
(2S,5S)-(-)-trans-Dihydrocarvone (9) was generated as the
major isomer (trans/cis ) 10:1). Ozonolysis of 9 in methanol
and subsequent treatment with Cu(OAc)2/FeSO4 resulted in
enone 10.12a Addition of methyllithium to 10 provided the
alcohol 11 (dr ) 1:1), which was smoothly oxidized with
(4) (a) Wu, T.-S.; Kao, M.-S.; Wu, P.-L.; Lin, F.-W.; Shi, L.-S.; Teng,
C.-M. Phytochemistry 1999, 52, 901. (b) Wu, T.-S.; Kao, M.-S.; Wu, P.-
L.; Lin, F.-W.; Shi, L.-S.; Liou, M.-J.; Li, C.-Y. Chem. Pharm. Bull. 1999,
47, 375. (c) Shirahata, K.; Kato, T.; Kitahara, Y.; Abe, N. Tetrahedron
1969, 25, 3179 and 4671. (d) Abe, N.; Onoda, R.; Shirahata, K.; Kato, T.;
Woods, M. C.; Kitahara, Y.; Ro, K.; Kurihara, T. Tetrahedron Lett. 1968,
9, 1993. (e) Shirahata, K.; Abe, N.; Kato, T.; Kitahara, Y. Bull. Chem. Soc.
Jpn. 1968, 41, 1732.
PCC to produce 712b ([R]23 ) -108.2 c 3.5, CHCl3). CuI-
D
mediated conjugate addition of 4-(trimethylsilyl)-3-butynyl-
magnesium chloride 1210 to 7 ensued by trapping the
resulting enolate with chlorotrimethylsilane generated the
TMS-enol ether 13. As 13 was labile to chromatography, it
was used immediately without purification. Treatment of 13
with a mixture of NaI and m-CPBA resulted in iodoketone
6 as a mixture of diastereomers (dr ) 19:1). The stereo-
chemistry at the newly generated stereocenter C2 is incon-
sequential with respect to the subsequent transformation and
hence was not assigned. The stereochemistry of C3 was
assigned with analogy to earlier observations on closely
related systems (Scheme 1).13 The addition of the Grignard
reagent 12 presumably occurred from the R-face of 7.
Exposure of 6 to the photolytic condition in the presence
of hexabutylditin effected iodine atom transfer cyclization
followed by deiodination with tributyltin hydride/AIBN
afforded vinylsilane ketone 14 as a mixture of E and Z
isomers (E/Z ) 3:1). Upon treatment with NaBH4, prefer-
ential reduction of the E isomer was observed. The steric
(5) (a) Jamieson, G. R.; Reid, E. H.; Turner, B. P.; Jamieson, A. T.
Phytochemistry 1976, 15, 1713. (b) Kano, K.; Hayashi, K.; Mitsuhashi, H.
Chem. Pharm. Bull. 1982, 30, 1198.
(6) (a) Nawrot, J.; Bloszyk, E.; Harmatha, J.; Novotny, L. J. Appl.
Entomol. 1984, 98, 394. (b) Nawrot, J.; Harmatha, J.; Novotny, L. Biochem.
Syst. Ecol. 1984, 12, 99. (c) Nawrot, J.; Bloszyk, E.; Harmatha, J.; Novotny,
L.; Drozdz, B. Acta Entomol. BohemosloV. 1986, 83, 327. (d) Kreckova,
J.; Krecek, J.; Harmatha, J. Pr. Nauk. Inst. Chem. Org. Fiz. Politech.
Wroclaw. 1988, 33, 105. (e) Rosinski, R.; Bloszyk, E.; Harmatha, J.; Knapik,
A. Pr. Nauk. Inst. Chem. Org. Fiz. Politech. Wroclaw 1988, 33, 91; Chem.
Abstr. 1988, 111, 112470.
(7) (a) Evans, D. A.; Sims, C. L.; Andrews, G. C. J. Am. Chem. Soc.
1977, 99, 5453. (b) Greene, A. E.; Depre´s, J.-P.; Coelho, F.; Brocksom, T.
J. J. Org. Chem. 1985, 50, 3943. (c) Greene, A. E.; Depre´s, J.-P.; Coelho,
F.; Brocksom, T. J. Tetrahedron Lett. 1988, 29, 5661. (d) Hayashi, K.;
Nakaura, H.; Mitsuhashi, H. Chem. Pharm. Bull. 1973, 21, 2806. (e) Back,
T. G.; Payne, J. E. Org. Lett. 1999, 1, 663. (f) Srikrishna, A.; Reddy, T. J.;
Nagaraju, S.; Sattigeri, J. A. Tetrahedron Lett. 1994, 35, 7841. (g) Reddy,
D. S. Org. Lett. 2004, 6, 3345. (h) Constantino, M. G.; de Oliveira, K. T.;
Polo, E. C.; da Siva, G. V. J.; Brocksom, T. J. J. Org. Chem. 2006, 71,
9880.
(8) (a) Hartmann, B.; Kanazawa, A. M.; Depre´s, J.-P.; Greene, A. E.
Tetrahedron Lett. 1993, 34, 3875. (b) Mori, K.; Matsushima, Y. Synthesis
1995, 845. (c) Srikrishna, A.; Reddy, T. J. Indian J. Chem. 1995, 34B,
844. (d) Coelho, F.; Depre´s, J.-P.; Brocksom, T. J.; Greene, A. E.
Tetrahedron Lett. 1989, 30, 565. (e) Srikrishna, A.; Nagaraju, S.; Ven-
kateswarlu, S. Tetrahedron Lett. 1994, 35, 429. (f) Srikrishna, A.; Nagaraju,
S.; Venkateswarlu, S.; Hiremath, U. S.; Reddy, T. J.; Vengopalan, P. J.
Chem. Soc., Perkin Trans. 1 1999, 1, 2069. (g) Hartmann, B.; Depre´s, J.-
P.; Greene, A. E.; deLima, M. E. F. Tetrahedron Lett. 1993, 34, 1487. (h)
Hamelin, O.; Depre´s, J.-P.; Greene, A. E.; Tinant, B.; Declercq, J.-P. J.
Am. Chem. Soc. 1996, 118, 9992. (i) Srikrishna, A.; Reddy, T. J.
Tetrahedron, 1998, 54, 11517.
(10) (a) Sha, C.-K.; Chiu, R.-T.; Yang, C.-F.; Yao, N.-T.; Tseng, W.-
H.; Liao, F.-L.; Wang, S.-L. J. Am. Chem. Soc. 1997, 119, 4130. (b) Sha,
C.-K.; Santhosh, K. C.; Lih, S.-H. J. Org. Chem. 1988, 63, 2699. (c) Sha,
C.-K.; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. 1999, 121, 9875. (d)
Sha, C.-K.; Ho, W.-Y. Chem. Commun. 1998, 24, 2709. (e) Sha, C.-K.;
Jean, T.-S.; Wang, D.-C. Tetrahedron Lett. 1999, 31, 3745.
(11) Hua, H. H.; Venkataraman, S. J. Org. Chem. 1988, 53, 1095.
(12) (a) Schreiber, S. L. J. Am. Chem. Soc. 1980, 102, 6165. (b) White,
J. D.; Grether, U. M.; Lee, C.-S. Org. Synth. 2005, 82, 108.
(13) Sha, C.-K.; Liao, H.-W.; Cheng, P.-C.; Yen, S.-C. J. Org. Chem.
2003, 68, 8704.
(9) (a) Hamelin, O.; Wang, Y.; Depre´s, J.-P.; Greene, A. E. Angew. Chem.
Int. Ed. 2000, 39, 4314. (b) Brocksom, T. J.; Coelho, F.; Depre´s, J.-P.;
Greene, A. E.; deLima, M. E. F.; Hamelin, O.; Hartmann, B.; Kanazawa,
A. M.; Wang, Y. J. Am. Chem. Soc. 2002, 124, 15313.
3242
Org. Lett., Vol. 9, No. 17, 2007