1710
G. Bashiardes et al.
LETTER
(7) Typical Thermal Procedure: To propargylformylpyrrole
(2 mmol) in xylene (10 mL), was added methyl sarcosinate
(4 mmol). The reaction mixture was refluxed with stirring
for 2 h under nitrogen atmosphere. Then sulfur (8 mmol) was
added and the refluxing was continued for another hour.
After cooling, the solvent was removed under reduced
pressure, and the crude product was purified by flash
chromatography on silica gel eluting with heptane–EtOAc
(4:1) to give product 8a (71% yield). IR (film): 3106, 3020,
1693, 1215, 1095 cm–1. 1H NMR (300 MHz, CDCl3): d =
6.95 (dd, J = 0.5, 2.7 Hz, 1 H), 6.89 (s, 1 H), 6.27 (dd, J =
2.7, 3.5 Hz, 1 H), 6.12 (dd, J = 0.5, 3.5 Hz, 1 H), 4.67 (s, 2
H), 4.03 (s, 3 H), 3.82 (s, 3 H). 13C NMR (75 MHz, CDCl3):
d = 161.9, 138.7, 129.5, 123.4, 123.2, 118.7, 112.2, 111.9,
96.7, 50.9, 46.8, 35.1.
(8) Typical Microwave Irradiation Procedure: To propargyl-
formylpyrrole (1.25 mmol) and methyl sarcosinate
(2.25 mmol) placed in a test tube (Ø = 10 mm), were added
sulfur (5 mmol) and xylene (0.5 mL) and mixed thoroughly
on a vortex mixer. The mixture was irradiated at a final
temperature of 130 °C at a maximum power of 100 W. After
cooling and removal of the solvent under reduced pressure,
followed by filtration through a short silica gel column using
heptane–EtOAc (4:1) as eluent, the desired product 8a was
obtained in 85% yield.
References and Notes
(1) (a) Jayashankaran, J.; Manian, R. D. R. S.; Raghunathan, R.
Tetrahedron Lett. 2004, 45, 7303. (b) Bashiardes, G.; Safir,
I.; Mohamed, A. S.; Barbot, F.; Laduranty, J. Org. Lett.
2003, 5, 4915.
(2) Microwaves in Organic Synthesis, 2nd ed.; Loupy, A., Ed.;
Wiley-VCH: Weinheim, 2006.
(3) (a) Travert, N.; Martin, M.-T.; Bourguet-Kondrackib, M.-L.;
Al-Mourabit, A. Tetrahedron Lett. 2005, 46, 249.
(b) Minguez, J. M.; Castellote, I.; Vaquero, J. J.; Navio, J. L.
G.; Alvarez-Builia, J.; Castano, O.; Andrés, J. L.
Tetrahedron 1997, 53, 9341. (c) Papeo, G.; Frau, M. A. G.-
Z.; Borghi, D.; Varasi, M. Tetrahedron Lett. 2005, 46, 8635.
(4) (a) Tiwari, R. K.; Singh, D.; Singh, J.; Yadav, V.; Pathak, A.
K.; Dabur, R.; Chhillar, A. K.; Singh, R.; Sharma, G. L.;
Chandra, R.; Verma, A. K. Bioorg. Med. Chem. Lett. 2006,
16, 413. (b) Akai, S.; Tsujino, T.; Akiyama, E.; Tanimoto,
K.; Naka, T.; Kita, M. Y. J. Org. Chem. 2004, 69, 2478.
(c) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003,
2209. (d) Zhang, X.; Li, X.; Lanter, J. C.; Sui, Z. Org. Lett.
2005, 7, 2043.
(5) (a) Billimoria, A. D.; Cava, M. P. J. Org. Chem. 1994, 59,
6777. (b) Liu, Y.; McWhorter, W. W. J. Am. Chem. Soc.
2003, 125, 4240. (c) Charette, A. B.; Mathieu, S.; Martel, J.
Org. Lett. 2005, 7, 5401.
(6) (a) Palacios, F.; Alonso, C.; Amezua, P.; Rubiales, G. J. Org.
Chem. 2002, 67, 1941. (b) Hobbs, C. F.; McMikkin, C. K.;
Papadopoulos, E. P.; Vanderwerj, C. A. J. Am. Chem. Soc.
1962, 84, 43.
(9) Madani, H.; Thompson, A. S.; Theradgill, M. D.
Tetrahedron 2002, 58, 8107.
(10) Mahmud, H.; Lovely, C. J.; Dias, H. V. R. Tetrahedron
2001, 57, 4095.
Synlett 2007, No. 11, 1707–1710 © Thieme Stuttgart · New York