C O M M U N I C A T I O N S
Table 1. Catalytic Asymmetric Diamination of Dienes and Trienea
catalysts, and chiral ligands as well as expansion of the substrate
scope and synthetic application is currently underway.
Acknowledgment. We are grateful for the generous financial
support from Camille and Henry Dreyfus Foundation.
Supporting Information Available: Experimental procedures,
characterizations, and data for determination of enantiomeric excess
1
of diamination products and their derivatives along with the H and
13C NMR spectra of compounds. This material is available free of
References
(1) For leading reviews, see: (a) Lucet, D.; Gall, T. L.; Mioskowski, C. Angew.
Chem., Int. Ed. 1998, 37, 2580. (b) Mortensen, M. S.; O’Doherty, G. A.
Chemtracts: Org. Chem. 2005, 18, 555. (c) Kotti, S. R. S. S.; Timmons,
C.; Li, G. Chem. Biol. Drug Des. 2006, 67, 101.
(2) For examples of metal-mediated diaminations, see: Co: (a) Becker, P.
N.; White, M. A.; Bergman, R. G. J. Am. Chem. Soc. 1980, 102, 5676.
Hg: (b) Barluenga, J.; Alonso-Cires, L.; Asensio, G. Synthesis 1979, 962.
Mn: (c) Fristad, W. E.; Brandvold, T. A.; Peterson, J. R.; Thompson, S.
R. J. Org. Chem. 1985, 50, 3647. Os: (d) Chong, A. O.; Oshima, K.;
Sharpless, K. B. J. Am. Chem. Soc. 1977, 99, 3420. (e) Mun˜iz, K. Eur. J.
Org. Chem. 2004, 2243. Pd: (f) Ba¨ckvall, J.-E. Tetrahedron Lett. 1978,
163. Tl: (g) Aranda, V. G.; Barluenga, J.; Aznar, F. Synthesis 1974, 504.
(3) For a recent Cu(II)-mediated intramolecular diamination, see: (a) Zabawa,
T. P.; Kasi, D.; Chemler, S. R. J. Am. Chem. Soc. 2005, 127, 11250. (b)
Zabawa, T. P.; Chemler, S. R. Org. Lett. 2007, 9, 2035.
(4) For Rh(II)- and Fe(III)-catalyzed diamination with TsNCl2, see: (a) Li,
G.; Wei, H.-X.; Kim, S. H.; Carducci, M. D. Angew. Chem., Int. Ed. 2001,
40, 4277. (b) Wei, H.-X.; Kim, S. H.; Li, G. J. Org. Chem. 2002, 67,
4777.
(5) For a recent Pd(II)-catalyzed intermolecular diamination of conjugated
dienes, see: Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J.
Am. Chem. Soc. 2005, 127, 7308.
(6) For a recent Pd(II)-catalyzed intramolecular diamination of terminal olefins,
see: Streuff, J.; Ho¨velmann, C. H.; Nieger, M.; Mun˜iz, K. J. Am. Chem.
Soc. 2005, 127, 14586.
(7) (a) Mun˜iz, K.; Nieger, M. Synlett 2003, 211. (b) Mun˜iz, K.; Iesato, A.;
Nieger, M. Chem.sEur. J. 2003, 9, 5581.
(8) (a) Mun˜iz, K.; Nieger, M. Chem. Commun. 2005, 2729. (b) Almodovar,
I.; Ho¨velmann, C. H.; Streuff, J.; Nieger, M.; Mun˜iz, K. Eur. J. Org.
Chem. 2006, 704.
(9) Greene, F. D.; Stowell, J. C.; Bergmark, W. R. J. Org. Chem. 1969, 34,
2254.
(10) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762.
(11) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 7496.
(12) For leading references on L1-L3, see: (a) Morrison, J. D.; Burnett, R.
E.; Aguiar, A. M.; Morrow, C. J.; Phillips, C. J. Am. Chem. Soc. 1971,
93, 1301. (b) Hattori, T.; Shijo, M.; Kumagai, S.; Miyano, S. Chem.
Express 1991, 6, 335. (c) Uozumi, Y.; Hayashi, T. J. Am. Chem. Soc.
1991, 113, 9887. (d) Grubbs, R. H.; DeVries, R. A. Tetrahedron Lett.
1977, 1879.
(13) For leading references on L4-L6, see: (a) de Vries, A. H. M.; Meetsma,
A.; Feringa, B. L. Angew. Chem., Int. Ed. Engl. 1996, 35, 2374. (b)
Sewald, N.; Wendisch, V. Tetrahedron: Asymmetry 1998, 9, 1341. (c)
Arnold, L. A.; Imbos, R.; Mandoli, A.; de Vires, A. H. M.; Naasz, R.;
Feringa, B. L. Tetrahedron 2000, 56, 2865.
(14) A ratio of 1:2.2 for Pd/L7 was found to be optimal for the conversion.
Similar ee’s with somewhat lower conversion were obtained in toluene.
(15) For leading references on L8 and L9, see: (a) Keller, E.; Maurer, J.;
Naasz, R.; Schader, T.; Meetsma, A.; Feringa, B. L. Tetrahedron:
Asymmetry 1998, 9, 2409. (b) Zhou, H.; Wang, W.-H.; Fu, Y.; Xie, J.-
H.; Shi, W.-J.; Wang, L.-X.; Zhou, Q.-L. J. Org. Chem. 2003, 68, 1582.
(16) No diamination at allylic and homoallylic carbons was observed with alkyl-
substituted dienes under the current reaction conditions.
a All reactions were carried out with diene or triene (0.40 mmol),
diaziridinone 2 (0.50 mmol), Pd2(dba)3 (0.02 mmol), and L7 (0.088 mmol)
in benzene-d6 (0.2 mL) in an NMR tube at 65 °C under argon for 1.5 h
unless otherwise stated. b A mixture of E and Z isomers was used. For entry
2, diene (0.88 mmol, E/Z ) 1/1.2, E isomer: 0.40 mmol); for entry 4,
diene (1.0 mmol, E/Z ) 1/1.5, E isomer: 0.40 mmol); for entry 5, diene
(0.73 mmol, E/Z ) 1.2/1, E isomer: 0.40 mmol); for entry 6, diene (0.64
mmol, E/Z ) 1.67/1, E isomer: 0.40 mmol); for entry 12, diene (0.64 mmol,
E/Z ) 1.67/1, E isomer: 0.40 mmol). c The reaction time was 2 h. d For
entry 4, the absolute configuration (R,R) was determined by comparing the
optical rotation with the reported one after removal of t-butyl groups (ref
21). For the rest, the absolute configurations are not determined, and the
stereochemistry indicated represents the relative stereochemistry. e Isolated
yield based on diene or triene. f The ee was determined by chiral GC
(Chiraldex B-DM column) after removal of t-butyl group. g The ee was
determined by chiral GC (Chiraldex B-DM column). h The ee was
determined by chiral HPLC (Chiralpak AD-H column). i The ee was
determined by chiral HPLC (Chiralpak AD column) after removal of t-butyl
groups.
(17) Styrene was not an effective substrate, and a small amount of diamination
product at allylic and homoallylic carbons was formed with 1-hexene under
the current reaction conditions.
(18) For a leading reference on biologically active cyclic ureas, see: Kim,
M.; Mulcahy, J. V.; Espino, C. G.; Du Bois, J. Org. Lett. 2006, 8, 1073.
(19) Clayden, J.; Menet, C. J. Tetrahedron Lett. 2003, 44, 3059.
(20) Dunn, P. J.; Ha¨ner, R.; Rapoport, H. J. Org. Chem. 1990, 55, 5017.
(21) Oshitari, T.; Akagi, R.; Mandai, T. Synthesis 2004, 1325.
(22) Diamino acids are present in many biologically active molecules; for
examples, see: (a) Shigematsu, N.; Setoi, H.; Uchida, I.; Shibata, T.;
Terano, H.; Hashimoto, M. Tetrahedron Lett. 1988, 29, 5147. (b)
Kuwahara, A.; Nishikiori, T.; Shimada, N.; Nakagawa, T.; Fukazawa, H.;
Mizuno, S.; Uehara, Y. J. Antibiot. 1997, 50, 712. (c) Lee, J.-C.; Kim, G.
T.; Shim, Y. K.; Kang, S. H. Tetrahedron Lett. 2001, 42, 4519.
(23) The ee of 8 was determined after being converted into diamide; the ee’s
of 10 and 12 were determined after being converted into methyl esters.
high regio-, diastereo-, and enantioselectivities. The resulting
diamination products are potentially valuable intermediates for the
synthesis of various optically active compounds such as diamine,
2,3-diamino acid. Further development of a more effective asym-
metric catalytic process using different nitrogen sources, metal
JA074698T
9
J. AM. CHEM. SOC. VOL. 129, NO. 38, 2007 11689