4
Tetrahedron
J. Org. Chem. 2001, 66, 9052-9055; (f) Chaudhuri, M. K.;
Table 3
Recycling of catalyst for the reaction of 4-nitrobenzaldehyde,
acetophenone, and anilinea
Hussain, S.; Kantam, M. L.; Neelima, B. Tetrahedron Lett. 2005,
46, 8329-8331; (g) Das, B.; Chawdhury, N. J. Mol. Catal. A:
Chem. 2007, 263, 212-216; (h) Wabnitz, T. C.; Spencer, J. B. Org.
Lett., 2003, 5, 2141-2144; (i) Basu, B.; Das, P.; Hossain, I. Synlett
2004, 2630-2632.
Entry
Cycle
Aza-Michael yield(%)b
Mannich yield(%)b
1
2
3
4
1
2
3
4
99
97
95
90
99
93
91
88
7. (a) Ai, X.; Wang, X.; Liu, J.-M.; Ge Z.–M.; Cheng, T.–M.; Li, R.–T.
Tetrahedron 2010, 66, 5373-5377; (b) Yang, L.; Xu. L. W.; Xia, C.–G.
Tetrahedron Lett. 2005, 46, 3279-3282; (c) Yang, L.; Xu, L.–W.; Zhou,
W.; Li, L.; Xia, C.-G. Tetrahedron Lett. 2006, 47, 7723-7726; (d) Yeom,
C.–E.; Kim, M. J.; Kim, B. M. Tetrahedron 2007, 63, 904-909; (e)
Movassagh, B.; Khosousi, S. Monatsh. Chem. 2012, 143, 1503-1506.
a Reaction conditions were the same as that of entry 10, Table 2 for both
reactions.
b Isolated yields.
8. (a) Wong, W.–P.; Ho K. –P.; Lee, L. Y. S.; Lam, K.–M.; Zhou, Z.–Y.;
Chan, T. H.;Wong, K.–Y. ACS Catal. 2011, 1, 116-119; (b) Corma, A.;
Garcia, H. Chem. Rev. 2003, 103, 4307-4366; (c) Davis, M. E. Nature
2002, 417, 813-821.
Fe3O4@SiO2@Me&Et-PhSO3H, which was used efficiently as a
heterogeneous catalyst in one-pot aza-Michael and Mannich
reactions for the synthesis of β-amino carbonyl compounds under
mild conditions. The high reactivity of the catalyst is probably
due to synergistic effects between sufficient hydrophobicity and
acidity of siliceous networks, which in turn results in: (a)
remarkable shielding effects against polar molecules, good
accessibility of the active sites and easier diffusion of reaction
partners within the network resulting from the presence of
organic methyl groups on the surface of catalyst, and (b) mild
acidic conditions for the preparation of β-amino ketones.10,11,12b
The catalyst can be recovered and reused, thus making these
procedures more environmentally acceptable.
9. (a) Nikolla, E.; Roman-Leshkov, Y.; Moliner, M.; Davis, M. E. ACS
Catal. 2011, 1, 408-410; (b) Barbaro, P.; Liguori, F. Chem. Rev. 2009,
109, 515-529.
10. (a) Liu, F. J.; Meng, X. J.; Zhang, Y. L.; Ren, L. M.; Nawaz, F.; Xiao, F.–
S. J. Catal. 2010, 271, 52-58; (b) Mondal, J.; Sen, T.; Bhaumik, A. Dalton
Trans. 2012, 41, 6173-6181; (c) Melero, J. A.; Bautista, L. F.; Morales,
G.; Iglesias, J.; Briones, D. Energy Fuels 2009, 23, 539-547; (d) Mbaraka,
I. K.; Shanks, B. H. J. Catal. 2005, 229, 365-373; (e) Molares, G.; Athens,
G.; Chmelka, B. F.; Van Grieken, R.; Melero, J. A. J. Catal. 2008, 254,
205-217; (f) Okuhara, T. Chem. Rev. 2002, 102, 3641-3666.
11. (a) Karimi, B.; Mirzaei, H. M.; Mobaraki, A. Catal. Sci. Technol. 2012, 2,
828-834; (b) Karimi, B.; Mobaraki, A.; Mirzaei, H. M.; Zareyee, D.; Vali,
H. Chem. Catal. Chem. 2014, 6, 212-219.
12. (a) Mobaraki, A.; Movassagh, B.; Karimi, B. ACS Comb. Sci. 2014, 16,
352-358; (b) Mobaraki, A.; Movassagh, B.; Karimi, B. Appl. Catal. A:
Gen. 2014, 472, 123-133; (c) Khalafi-Nezhad, A.; Mohammadi, S. ACS
Comb. Sci. 2013, 15, 512-518; (d) Wang, S.; Zhang, Z.; Liu, B.; Li, J.
Catal. Sci. Technol. 2013, 3, 2104-2112; (e) Liu, Y. H.; Deng, J.; Gao, J.
W.; Zhang, Z. H. Adv. Synth. Catal. 2012, 354, 441-447; (f) Zhang, Q.;
Su, H.; Luo, J.; We, Y. Green Chem. 2012, 14, 201-208.
Acknowledgments
This work was supported by the Research Council of the K. N.
Toosi University of Technology and the Iranian National Science
Foundation (INSF, Grant No. 92013520). The authors express
their gratitude to Dr. Sogand Noroozizadeh for revising the
English language of the manuscript.
13. Lin, P.; Li, B.; Li, J.; Wang, H.; Bian, X. B.; Wang, X. Catal. Lett. 2011,
141, 459-466.
14. Suresh, R.; Kamalakkannan, D.; Ranganathan, K.; Arulkumaran, R.;
Sundararajan, R.; Sakthinathan, S. P.; Vijayakumar, S.; Sathiyamoorthi,
K.; Mala, V.; Vanangamudi, G.; Thirumurthy, K.; Mayavel, P.;
Thirunarayanan, G. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.
2013, 101, 239-248.
References and notes
1. (a) Juaristi, E. Enantioselective Synthesis of β-Amino Acids; Wiley-VCH:
New York, 1991; (b) Davies, S. G.; Smith, A. D.; Price, P. D.
Tetrahedron: Asymmetry 2005, 16, 2833-2891; (c) Prakasch, M.;
Srivastava, S.; Leek, D. M.; Arya, P. J. Comb. Chem. 2006, 8, 762-773;
(d) Dorbec, M.; Florent, J.–C.; Monneret, C.; Rager, M.–N.;
Bertounesque, E. Synlett 2006, 591-594; (e) Chandrasekhar, S.; Reddy, N.
R.; Rao, Y. S. Tetrahedron 2006, 62, 12098-12107; (f) Dorbec, M.;
Florent, J.–C; Monneret, C.; Rager, M.–N.; Bertounesque, E. Tetrahedron
2006, 62, 11766-11781.
15. General procedure for the one pot aza-Michael-type reaction: A mixture
of aldehyde (2.0 mmol), ketone (3.0 mmol) in absolute EtOH (4 mL) was
placed in a flask. While stirring magnetically at room temperature,
Fe3O4@SiO2@Me&Et-PhSO3H (0.1 g, 0.72 mol%) was added to the above
mixture and stirring was continued for 30-60 min. The course of the
reaction was monitored by TLC until the starting materials had completely
disappeared, and the corresponding chalcone had formed. Next, the amine
(2 mmol) was added, and the mixture was stirred for the appropriate
amount of time (Table 2). After the completion of the reaction (TLC), the
catalyst was separated by magnetic decantation, followed by evaporation
of the solvent. The crude product was either recrystallized from EtOH or
subjected to preparative TLC (silica gel, eluent EtOAc/pet. ether = 1:4).
All the products were characterized by IR, 1H and 13C NMR spectroscopy.
2. (a) Abele, S.; Seebach, D. Eur. J. Org. Chem. 2000, 6, 1-15; (b) Hagiwara,
E.; Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120, 2474-2475; (c)
Seebach, D.; Matthews, J. L. Chem. Commun. 1997, 2015-2022; (d)
Drury, W. J.; Ferraris, D.; Cox, C.; Young, B.; Lectka, T. J. Am. Chem.
Soc. 1998, 120, 11006-11007; (e) Kleinmann, E. F. Comprehensive
Organic Synthesis, Pergamon, New York, 1991; (f) Corey, E. J.; Reichard,
G. A. Tetrahedron Lett. 1989, 30, 5207-5210.
General procedure for the one-pot Mannich-type reaction: To a mixture of
aldehyde (2.0 mmol) and amine (2.0 mmol) in absolute EtOH (4 mL), was
added the catalyst (0.06 g, 0.6 mol%). The mixture was stirred at room
temperature for 10-15 min until the starting materials had almost
disappeared (TLC). The ketone (3.0 mmol) was then added, and the
mixture was stirred for the appropriate amount of time (Table 2) until the
reaction was complete as monitored by TLC. An analytical sample was
obtained by the same method described for the aza-Michael-type reaction.
3. (a) Prukala, D. Tetrahedron Lett. 2006, 47, 9045-9047; (b) Pandey, G.;
Singh, R. P.; Garg, A.; Singh, V. K. Tetrahedron Lett. 2005, 46, 2137-
2140; (c) Periasamy, M.; Suresh, S.; Ganesan, S. S. Tetrahedron Lett.
2005, 46, 5521-5524; (d) Badorrey, R.; Cativiela, C.; Diaz-de-Villegas, M.
D.; Galvez, J. A. Tetrahedron Lett. 2003, 44, 9189-9192; (e) Loh, T. P.;
Wei, L. L. Tetrahedron Lett. 1998, 39, 323-326.
4. (a) Sahoo, S.; Joseph, T.; Halligudi, S. B. J. Mol. Catal. A: Chem. 2006,
244, 179-182; (b) Akiyama, T.; Matsuda, K.; Fuchibe, K. Synlett 2005,
322-324; (c) Akiyama, T.; Takaya, J.; Kagoshima, H. Synlett 1999, 1426-
1428; (d) Manabe, K.; Kobayashi, S. Org. Lett. 1999, 1, 1965-1967; (e)
Iimura, S.; Nobutou, D.; Manabe, K.; Kobayashi, S. Chem. Commun.
2003, 1644-1645.
16. (a) Bigdeli, M. A.; Nemati, F.; Mahdavinia, G. H. Tetrahedron Lett. 2007,
48, 6801-6804; (b) Li, Z.; Ma, X.; Liu, J.; Feng. X.; Tian, G.; Zhu, A. J.
Mol. Catal. A: Chem. 2007, 272, 132-135; (c) Yang, H.–M.; Li, L.; Li, F.;
Jiang, K.–Z.; Shang, J.–Y.; Lai, G.–Q.; Xu, L.–W. Org. Lett. 2011, 13,
6508-6511; (d) Ollevier, T.; Nadeau, E. Org. Biomol. Chem. 2007, 5,
3126-3134; (e) Ranu, B. C.; Samanta, S.; Guchhait, S. K. Tetrahedron
2002, 58, 983-988; (f) Zahouily, M.; Bahlaouan, B.; Rayadh, A.; Sebti, S.
Tetrahedron Lett. 2004, 45, 4135-4138; (g) Nemati, F.; Fakhaei, A. S.;
Amoozadeh, A.; Hayeniaz, Y. S. Synth. Commun. 2011, 41, 3695-3702;
(h) Kidwai, M.; Mishra, N. K.; Bansal, V.; Kumar, A.; Mozumdar, S.
Tetrahedron Lett. 2009, 50, 1355-1358.
5. Takahashi, E.; Fujisawa, H.; Mukaiyama, T. Chem. Lett. 2004, 33, 936-
937.
6. (a) Azizi, N.; Saidi, M. R. Tetrahedron 2004, 60, 383-387; (b)
Varala, R.; Alam, M. M.; Adapa, S. R. Synlett 2003, 720-722; (c)
Jenner, G. Tetrahedron Lett. 1995, 36, 233-236; (d) Srivastava, N.;
Banik, B. K. J. Org. Chem. 2003, 68, 2109-2114; (e) Bartoli, G.;
Bosco, M.; Marcantoni, E.; Petrini, M.; Sambri, L. Torregiani, E.