ORGANIC
LETTERS
2004
Vol. 6, No. 20
3489-3492
Highly Regioselective Synthesis of
Tetrahydro-2H-1,3-thiazin-2-ones via
Rhodium-Catalyzed Carbonylation of
N-Alkylisothiazolidines
Chune Dong and Howard Alper*
Centre for Catalysis Research and InnoVation, Department of Chemistry,
UniVersity of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
Received July 7, 2004
ABSTRACT
The [Rh(COD)Cl]2- and KI-catalyzed carbonylation of functionalized N-alkylisothiazolidines in toluene gives the corresponding tetrahydro-2H-
1,3-thiazin-2-ones in good yield. The carbonylation reaction occurred site-selectively at the S N bond of the isothiazolidine ring. The reaction
−
is believed to proceed via oxidative addition, followed by CO insertion and reductive elimination to form the tetrahydro-2H-1,3-thiazin-2-one
derivatives.
The transition-metal-catalyzed carbonylation of heterocycles
is an attractive method in organic synthesis. In most cases,
the carbonylation reaction provides a very convenient and
effective one-step procedure for ring homologation and gives
rise to heterocyclic derivatives that are not readily accessible
or are unavailable through conventional methods. A number
of valuable carbonyl-containing compounds can be prepared
in this way from the corresponding simple heterocyclic
substrates.1 Most examples of this type of reaction have
involved the ring-expanding or ring-opening carbonylation
of substrates with considerable ring strain.2-9 Although the
carbonylation of heterocycles containing one heteroatom has
been investigated in considerable detail, few examples have
been reported so far using heterocycles with two or more
heteroatoms. During the course of our studies of the
development of transition-metal-catalyzed carbonylation
methods,9-12 we recently reported that the carbonylation of
isoxazolidines proceeded with insertion of CO into the N-O
(5) (a) Boeckman, R. K.; Reed, J. E.; Ge, P. Org. Lett. 2001, 3, 3651.
(b) Yoneda, E.; Kaneko, T.; Zhang, S. W.; Onitsuka, K.; Takahashi, S.
Org. Lett. 2000, 2, 441.
(6) (a) Allmendinger, M.; Eberhardt, R.; Luinstra, G.; Rieger, B. J. Am.
Chem. Soc. 2002, 124, 5646. (b) Jia, L.; Ding, E.; Anderson, W. R. Chem.
Commun. 2001, 1436.
(7) (a) Dhawan, R.; Dghaym, R. D.; Arndtsen, B. A. J. Am. Chem. Soc.
2003, 125, 1474. (b) Dghaym, R. D.; Dhawan, R.; Arndtsen, B. A. Angew.
Chem., Int. Ed. 2001, 40, 3228.
(8) (a) Lafrance, D.; Davis, J. L.; Dhawan, R.; Arndtsen, B. A.
Organometallics 2001, 20, 1128. (b) Davis, J. L.; Arndtsen, B. A.
Organometallics 2000, 19, 4657.
(1) (a) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. ReV. 1996, 96, 177. (b)
Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. ReV. 1999, 99,
1991. (c) Colquhoun, H. M.; Thompson, D. G.; Twigg, M. V. Carbony-
lation; Plenum Press: New York, 1991; pp 191-203.
(2) Khumtaveeporn, K.; Alper, H. Acc. Chem. Res. 1995, 28, 414.
(3) (a) Molnar, F.; Luinstra, G.; Allmendinger, M.; Rieger, B. Chem.
Eur. J. 2003, 9, 1273. (b) Mahadevan, V.; Getzler, Y. D. Y. L.; Coates, G.
W. Angew. Chem., Int. Ed. 2002, 41, 2781. (c) Gethzler, Y. D. Y. L.;
Mahadevan, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002,
124, 1174.
(9) (a) Lee, T. L.; Thomas, P. J.; Alper, H. J. Org. Chem. 2001, 166,
5424. (b) Alper, H.; Wang, M. D. J. Am. Chem. Soc. 1992, 114, 7018. (c)
Van den Hoven, B. G.; Alper, H. J. Am. Chem. Soc. 2001, 123, 1017. (d)
Van den Hoven, B. G.; Alper, H. J. Am. Chem. Soc. 2001, 123, 10214.
(10) Van den Hoven, B. G.; Alper, H. J. Org. Chem. 2000, 65, 4131.
(11) Larksarp, C.; Alper, H. Org. Lett. 1999, 1, 1619.
(4) Davoli, P.; Forni, A.; Moretti, I.; Prati, F.; Torre, G. Tetrahedron
2001, 57, 1801.
(12) (a) Larksarp, C.; Alper, J. Org. Chem. 2000, 65, 2773. (b) Davoli,
P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem. 1999, 64, 518.
10.1021/ol048706b CCC: $27.50
© 2004 American Chemical Society
Published on Web 09/10/2004