4782
E.C. Volpe et al. / Journal of Organometallic Chemistry 692 (2007) 4774–4783
[12] V. Grushin, N. Herron, D.D. LeCloux, W.J. Marshall, V.A. Petrov,
Y. Wang, J. Chem. Soc., Chem. Commun. (2001) 1494.
[13] (a) S. Lamansky, P. Djurovich, D. Murphy, F. Razzaq-Abdel, H.-E.
Lee, C. Adachi C, P.E. Burrows, S.R. Forrest, M.E. Thompson, J.
Am. Chem. Soc. 123 (2001) 4304;
6.34 (‘‘t,’’ 1H, J = 6.0), 6.19 (‘‘t,’’ 1H, J = 6.0). The same
procedure was followed for 4b, which was isolated as an
orange-brown solid (50%).
4.3. Calculation details
(b) A. Tamayo, B. Alleyne, P.I. Djurovich, I.T. Lamansky, N.
Ho, R. Bau, M.E. Thompson, J. Am. Chem. Soc. 125 (2003)
7377.
All calculations were done using the GAUSSIAN 03 pro-
gram [29]. Computations were performed at the B3PW91
level of theory, employing Becke’s three-parameter hybrid
DFT/HF exchange functional [30] and Perdew and Wang’s
non-local exchange parameter [31]. The CEP-31G effective
core potential basis set was used [32–34]. Atomic coordi-
nates from the X-ray structure of 3a were used, and in all
cases geometry optimizations were carried out without
symmetry constraints.
[14] R.L. Lagadec, L. Alexandrova, H. Estevez, M. Pfeffer, V. Lauri-
navicˇius, J. Razumiene, A.D. Ryabov, Eur. J. Inorg. Chem. 14 (2006)
2735.
[15] D. Kalyani, N.R. Deprez, L.V. Desai, M.S. Sanford, J. Am. Chem.
Soc. 127 (2005) 7330, This paper describes C–H activation of 2-
phenylpyridine derivatives by Pd(II), followed by C–C bond forma-
tion to form a variety of ortho-arylated products.
[16] A.R. Dick, J.W. Kampf, M.S. Sanford, J. Am. Chem. Soc. 127 (2005)
12790.
[17] K.L. Hull, W.Q. Anani, M.S. Sanford, J. Am. Chem. Soc. 128 (2006)
7134, C–H activation of quinoline and 2-phenylpyridine derivatives
by Pd(II), followed by fluorination resulted in a variety of ortho-
fluorinated compounds.
Acknowledgements
[18] K.L. Hull, E.L. Lanni, M.S. Sanford, J. Am. Chem. Soc. 128 (2006)
14047, The Pd(II)/(IV) cycle is employed in the oxidative coupling of
several 2-phenylpyridine derivatives, resulting in a variety of func-
tionalized biaryls.
[19] Y. Inada, Y. Nakano, M. Inamo, M. Nomura, S. Funahashi, Inorg.
Chem. 39 (2000) 4793.
P.T.W. thank the National Science Foundation (CHE-
0415506) and Cornell University for financial support.
The DFT study was done as an assignment for Chem 665
under the direction of Prof. Barry K. Carpenter.
[20] (a) T.R. Younkin, E.F. Connor, J.I. Henderson, S.K. Friedrich,
R.H. Grubbs, D.A. Bansleben, Science 287 (2000) 460;
(b) E.F. Connor, T.R. Younkin, J.I. Henderson, A.W. Waltman,
R.H. Grubbs, Chem. Commun. (2003) 2272;
Appendix A. Supplementary material
(c) A.W. Waltman, T.R. Younkin, R.H. Grubbs, Organometallics 23
(2004) 5121.
[21] K. Tamao, J. Organometal. Chem. 653 (2002) 23.
[22] M. Sanford has produced the compound from 2 equiv of 2-(2-
lithiophenyl)-pyridine and a Ni(II) source; personal communication.
CCDC 645421, 645423, 645422 and 645424 contain the
supplementary crystallographic data for 1a, 2a, 3a and 4a.
These data can be obtained free of charge via http://
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK, fax: (+44) 1223-336-033, or
e-mail: deposit@ccdc.cam.ac.uk. Supplementary data asso-
ciated with this article can be found, in the online version,
[23] (a) For a structure of the Pt analogue, see: L. Chassot, E. Muller, A.
¨
von Zelewsky, Inorg. Chem. 23 (1984) 4249;
(b) , The Pd analogue has also been synthesized. See:P. Jolliet, M.
Gianini, A. von Zelewsky, G. Bernardinelli, H. Stoeckli-Evans,
Inorg. Chem. 35 (1996) 4883.
[24] J.M. Huggins, R.G. Bergman, J. Am. Chem. Soc. 103 (1981) 3002.
[25] M.A. Bennett, S.A. Macgregor, E. Wenger, Helv. Chim. Acta 84
(2001) 3084.
References
[26] M. Lersch, M. Tilset, Chem. Rev. 105 (2005) 2471.
[27] A. Toner, J. Matthes, S. Grundemann, E. Clot, H.-H. Limbach, B.
¨
Donnadieu, S. Sabo-Etienne, B. Chaudret, J. Am. Chem. Soc. 122
(2000) 6777.
[28] B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applica-
tions, Wiley-VCH, New York, 2000.
[1] P.J. King, Organomet. Chem. 30 (2002) 282.
[2] (a) Y. Jean, F. Volatron, J. Burdett, An Introduction to Molecular
Orbitals, Oxford Univ. Press, New York, 1993;
(b) T.A. Albright, J.K. Burdett, Problems in Molecular Orbital
Theory, Oxford Univ. Press, New York, 1992.
[29] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C.
Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.
Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J.
Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma,
G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S.
Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A. D
Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G.
Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T.
Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challa-
combe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C.
Gonzalez, J.A. Pople, GAUSSIAN 03, Revision C.02, Gaussian, Inc.,
Wallingford CT, 2004.
[3] A.D. Ryabov, Chem. Rev. 105 (2005) 503.
[4] J. Dupont, C.S. Consorti, J. Spencer, Chem. Rev. 105 (2005) 2527.
[5] W. Henderson, Adv. Organomet. Chem. 54 (2006) 207.
[6] R.H. Crabtree, The Organometallic Chemistry of the Transition
Metals, fourth ed., John Wiley & Sons, New York, 2005.
[7] J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, Principles and
Applications of Organotransition Metal Chemistry, University Sci-
ence Books, Mill Valley, CA, 1987.
[8] A. Kasahara, Bull. Chem. Soc. Jpn. 41 (1968) 1272.
[9] B.N. Cockburn, D.V. Howe, T. Keating, B.F.G. Johnson, J. Lewis,
J. Chem. Soc., Dalton Trans. 4 (1973) 404.
[10] M.I. Bruce, B.L. Goodall, I. Matsuda, Aust. J. Chem. 28 (1975)
1259.
[11] (a) S. Sprouse, K.A. King, P.J. Spellane, R.J. Watts, J. Am. Chem.
Soc. 106 (1984) 6647;
(b) K. Dedelan, P.I. Djurovich, F.O. Garces, G. Carlson, R.J. Watts,
Inorg. Chem. 30 (1991) 1685.