J. Borra´s et al. / Polyhedron 26 (2007) 5009–5015
5015
because after the reduction of Cu(II), the Cu(I) species thus
References
formed is unstable. The reduction peak at ꢀ1.0 mV relative
to SCE corresponds to ꢀ0.78 mV relative to NHE. Irre-
versible cyclic voltammograms are also obtained from the
complex in DMF solution, which shows a reduction peak
at ꢀ0.654 mV relative to SCE. The negative values indicate
a strong stabilization of the copper(II) state through the
formation of the complex.
[1] E.M. Smolin, L. Rapoport, S-Triazines and Derivatives, Interscience,
New York, 1959, p. 163.
[2] E.I. Lerner, S.J. Lippard, J. Am. Chem. Soc. 98 (1976) 5397.
[3] E.I. Lerner, S.J. Lippard, Inorg. Chem. 16 (1977) 1546.
[4] J. Faus, M. Julve, J.M. Amigo, T. Debaerdemaeker, J. Chem. Soc.,
Dalton Trans. (1989) 1681.
[5] P.A. Gillard, P. A Williams, Trans. Metal Chem. 4 (1979) 18.
[6] P. Paul, B. Tyagi, M.M. Bhadbhade, E. Suresh, J. Chem. Soc., Dalton
Trans. (1997) 2273.
[7] P. Paul, B. Tyagi, A.K. Bilakhiya, M.M. Bhadbade, G. Ramac-
handaiah, Inorg. Chem. 37 (1998) 5733.
4. Conclusions
In this paper, we present the crystal structures of three
copper(II) chlorobenzoate complexes with the hydrolysis
derivꢀative of 2,4,6-tris(2-pyridyl)-1,3,5-triazine (ptz), the
ptO2 ligand. An in-depth study of these crystal structures
has revealed several interesting differences. In the
[Cu(ptO2)(3-Clbenz)] (2) complex, the copper(II) ion is
[8] X.-P. Zhou, D. Li, S.-L. Zheng, X. Zhang, T. Wu, Inorg. Chem. 45
(2006) 7119.
´
[9] J.V. Folgado, E. Coronado, D. Beltran-Porter, R. Burriel, A. Fuertes,
C. Miratvilles, J. Chem. Soc., Dalton Trans. (1988) 3041.
[10] A. Cantarero, J.M. Amigo, J. Faus, M. Julve, T. Debaerdemaeker, J.
Chem. Soc., Dalton Trans. (1988) 2033.
´
´
[11] J.V. Folgado, E. Martinez-Tamayo, A. Beltran-Porter, D. Beltran-
ꢀ
Porter, Polyhedron 8 (1989) 1077.
[12] A. Kamiyama, T. Noguchi, T. Kajiwara, T. Ito, Inorg. Chem. 41
(2002) 507.
[13] T. Glaser, T. Lugger, R. Fro¨hlich, Eur. J. Inorg. Chem. (2004) 394.
[14] B. Casellas, F. Constantino, A. Mandonnet, A. Caneschi, D.
Gatteschi, Inorg. Chim. Acta 358 (2005) 177.
[15] S.A. Cotton, V. Franckevicius, M.F. Mahon, L.L. Ooi, P.R. Taithby,
Polyhedron 25 (2006) 1057.
semicoordinated to a carbonyl oxygen atom of the ptO2
of another contiguous molecule with a Cu–O distance of
˚
2.719 A. In the other two complexes, the corresponding
˚
˚
distances are 3.929 A and 4.707 A for [Cu(ptO2)(2-
Clbenz)(H2O)] (1) and [Cu(ptO2)(4-Clbenz)(DMF)] (3),
respectively. These differences are influenced by the posi-
tion of the chlorine atom in the benzoate. When the chlo-
rine atom is in position 2 or 4, the donor effect of the
carboxylate oxygen atoms involved in the metal complexa-
tion is reinforced whereas a chlorine in position 3 reduces
this effect. In this last case, the electronic density on the
copper(II) is lower, which leads the metal ion in the
[Cu(ptO2)(3-Clbenz)] (2) complex to form a semicoordina-
tive bond with a contiguous ptO2ꢀ, which, in turn, gives
rise to a chain structure.
´
´
´
´
[16] J. Borras, G. Alzuet, M. Gonzalez-Alvarez, J.L. Garcıa-Gimenez, B.
´
´
Macıas, M. Liu-Gonzalez, Eur. J. Inorg. Chem. (2007) 822.
[17] Bruker, APEX2 Software, Bruker AXS Inc. V2.0-1, Madison,
Wisconsin, USA, 2005.
[18] G.M. Sheldrick, SADABS. Program for Empirical Absorption Correc-
tion of Area Detector Data, University of Goettingen, Germany,
1997.
[19] COLLECT, Nonius BV, 1997–2000.
[20] Denzo-Scalepack Z. Otwinowski, W. Minor, Processing of X-ray
Diffraction Data Collected in Oscillation Mode, in: C.W. CarterJr.,
R.M. Sweet (Eds.), Methods in Enzymology, Macromolecular
Crystallography, Part A, vol. 276, Academic Press, 1997, p. 307.
[21] G.M. Sheldrick, Acta Crystallogr. Sect., A 46 (1990) 467.
[22] SIR97 A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C.
Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R.
Spagna, J. Appl. Cryst. 32 (1999) 115.
[23] G.M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal
Structures, University of Goettingen, Germany, 1997.
[24] A.L. Spek, PLATON. A Multipurpose Crystallographic Tool, Utrecht
University, Utrecht, The Netherlands, 2003.
Acknowledgements
J.B., G.A., and M.G.-A. acknowledge financial support
from the Spanish CICYT (CTQ2004-03735). B.M.
acknowledges financial support from the Junta de Castilla
´
y Leon (SA056A05). A.C. acknowledges financial support
from Spanish CICYT (CTQ2006-15329-C02/BQU). F.E.
gratefully thanks Generalitat Valenciana (Proyect GV06/
376) for financial support.
[25] (a) PARST. M. Nardelli, Comput. Chem. 7 (1983) 95;
(b) M. Nardelli, J. Appl. Crystallogr. 28 (1995) 659.
[26] A.J.C. Wilson, International Tables for Crystallography, vol. C,
Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.
[27] W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, C.G. Verschoor, J.
Chem. Soc., Dalton Trans. (1984) 1349.
Appendix A. Supplementary material
[28] G.A. Jefrey, An Introduction to Hydrogen Bonding, Oxford Univer-
sity Press, Oxford, 1997.
CCDC 644942, 644943 and 644944 contain the supple-
mentary crystallographic data for 1, 2 and 3. These data
lographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: (+44) 1223 336 033; or e-mail:
[29] L.P. Battaglia, A. Bonamartini-Corradi, G. Marcotrigiano, L.
Menabue, G.C. Pellacani, Inorg. Chem. 18 (1979) 148.
[30] G.G.B. Deacon, R.J. Phillips, Coord. Chem. Rev. 33 (1980) 227.
[31] K. Nakamoto, Infrared and Raman Spectra of Inorganic and
Coordination Compounds, 4th ed., Wiley, New York, 1986, p. 228.
[32] WINEPR-Simphonia 1.25 Bruker Analytic Gmbh, Kalrsruhe, FRG,
1994.