M.-L. Ho et al. / Polyhedron 26 (2007) 4886–4892
4891
(g) D.P. Wernette, C.B. Swearingen, D.M. Cropek, M. Donald,
Y. Lu, J.V. Sweedler, P.W. Bohn, Analyst 131 (2006) 41.
[4] S. Deo, H.A. Godwin, J. Am. Chem. Soc. 122 (2000) 174.
[5] M.-Y. Chae, J. Yoon, A.W. Czarnik, J. Mol. Recognit. 9 (1996)
297.
[6] J.Y. Kwon, Y.J. Jang, Y.J. Lee, K.M. Kim, M.S. Seo, W. Nam, J.
Yoon, J. Am. Chem. Soc. 127 (2005) 10107.
[7] (a) R. Slone, D.I. Yoon, R.M. Calhoun, J.T. Hupp, J. Am. Chem.
Soc. 117 (1995) 11813;
the phosphorescence, respectively. The emission quenching
effect must be due to the affected core chromophores, i.e.,
the di(2-pyridyl) pyrazolate, that directly linked with
Pb2+, provoking the intersystem crossing to another
lower-lying triplet state for the host molecule via an
enhanced spin–orbit coupling. Consequently, the emission
intensity will plausibly be quenched due to a smaller T1–
S0 energy gap.
(b) P.K.M. Siu, S.-W. Lai, W. Lu, N. Zhu, C.-M. Che, Eur. J. Inorg.
Chem. (2003) 2749;
(c) Q.-Z. Yang, L.-Z. Wu, H. Zhang, B. Chen, Z.-X. Wu, L.-P.
Zhang, C.-H. Tung, Inorg. Chem. 43 (2004) 5195;
(d) M.-J. Li, B.W.-K. Chu, N. Zhu, V.W.-W. Yam, Inorg. Chem. 46
(2007) 720.
On the other hand, the internal motion of the uncoordi-
nated pyridyl substituent can play some crucial role in the
emission quenching mechanism. To obtain an enhanced
emission, in future, one can design a host molecule which
will increase its rigidity after the complexation without
affecting its chromophore. In this approach, the current
system is versatile in that the functionalization can be
achieved with methods similar to that have been strategi-
[8] (a) Y. Shen, B.P. Sullivan, Inorg. Chem. 34 (1995) 6235;
(b) V.W.-W. Yam, C.-L. Chan, C.-K. Li, K.M.-C. Wong, Coord.
Chem. Rev. 216–217 (2001) 173;
(c) V.W.-W. Yam, R.P.-L. Tang, K.M.-C. Wong, X.-X. Lu, K.-K.
Cheung, N. Zhu, Chem. Eur. J. 8 (2002) 4066;
(d) L.J. Charbonniere, R.F. Ziessel, C.A. Sams, A. Harriman, Inorg.
Chem. 42 (2003) 3466.
1
cally designed for the pp* (i.e. fluorescence) chromoph-
ores. In view of oxygen quenching, in a steady state
approach, one can then saturate the solution with N2 so
that the enhanced phosphorescence can also serve as an
additional signaling to distinguish it from the fluorescence
interference. The success in the recognition of Pb2+(aq) in
the TLC plate demonstrates its suitability for the concep-
tual development of a practical recognization device. The
results may spark a broad range of interest in both funda-
mental approach and applications relevant to third-row
transition metal complexes.
[9] (a) J. Ohshita, T. Uemura, T. Inoue, K. Hino, A. Kunai, Organo-
metallics 25 (2006) 2225;
(b) S.A. McFarland, D. Magde, N.S. Finney, Inorg. Chem. 44 (2005)
4066;
(c) M.-J. Li, B.W.-K. Chu, V.W.-W. Yam, Chem. Eur. J. 12 (2006)
3528.
[10] (a) J.F. Michalec, S.A. Bejune, D.G. Cuttell, G.C. Summerton, J.A.
Gertenbach, J.S. Field, R.J. Haines, D.R. McMillin, Inorg. Chem. 40
(2001) 2193;
(b) J.D. Lewis, L. Bussotti, P. Foggi, R.N. Perutz, J.N. Moore, J.
Phys. Chem. A 106 (2002) 12202;
(c) J.D. Lewis, J.N. Moore, Dalton Trans. (2004) 1376;
(d) W.-S. Tang, X.-X. Lu, K.M.-C. Wong, V.W.-W. Yam, J. Mater.
Chem. 15 (2005) 2714.
Acknowledgements
[11] M.-L. Ho, F.-M. Hwang, P.-N. Chen, Y.-H. Hu, Y.-M. Cheng, K.-S.
Chen, G.-H. Lee, Y. Chi, P.-T. Chou, Org. Biomol. Chem. (2006) 98.
[12] D.S. McClure, J. Chem. Phys. 20 (1952) 682.
[13] (a) P.-T. Chou, Y. Chi, Chem. Eur. J. 13 (2007) 380;
(b) P.-T. Chou, Y. Chi, Eur. J. Inorg. Chem. (2006) 3319.
[14] (a) C.-H. Yang, S.-W. Li, Y. Chi, Y.-M. Cheng, Y.-S. Yeh, P.-T.
Chou, G.-H. Lee, C.-H. Wang, C.-F. Shu, Inorg. Chem. 44 (2005)
7770;
(b) C.-J. Chang, C.-H. Yang, K. Chen, Y. Chi, C.-F. Shu, M.-L. Ho,
Y.-S. Yeh, P.-T. Chou, Dalton Trans. (2007) 1881.
[15] (a) Y. Shen, B.P. Sullivan, J. Chem. Edu. 74 (1997) 685;
(b) P.D. Beer, S.W. Dent, N.C. Fletcher, T.J. Wear, Polyhedron 15
(1996) 2983;
We thank the National Science Council of Taiwan,
ROC for the financial Support.
Appendix A. Supplementary material
CCDC 643498 contains the supplementary crystallo-
graphic data for 1-Pb2+. These data can be obtained free
html, or from the Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)
1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supple-
mentary data associated with this article can be found, in
(c) M.E. Padilla-Tosta, J.M. Lloris, R. Martinez-Manez, M.D.
Marcos, M.A. Miranda, T. Pardo, F. Sancenon, J. Soto, Eur. J.
Inorg. Chem. (2001) 1475.
[16] T. Lazarides, T.A. Miller, J.C. Jeffery, T.K. Ronson, H. Adams,
M.D. Ward, Dalton Trans. (2005) 528.
References
[17] W.-S. Yu, C.-C. Cheng, Y.-M. Cheng, P.-C. Wu, Y.-H. Song, Y. Chi,
P.-T. Chou, J. Am. Chem. Soc. 125 (2003) 10800.
[18] (a) P.-T. Chou, G.-R. Wu, C.-Y. Wei, C.-C. Cheng, C.-P. Chang,
F.–T. Hung, J. Phys. Chem. B 103 (1999) 10042;
(b) P.-T. Chou, G.-R. Wu, C.-Y. Wei, C.-C. Cheng, C.-P. Chang,
F.-T. Hung, J. Phys. Chem. B 104 (2000) 7818;
(c) P.-T. Chou, C.-Y. Wei, C.-R.C. Wang, F.-T. Hung, C.-P.
Chang, J. Phys. Chem. A 103 (1999) 1939.
[19] C.Y. Chen, C.T. Cheng, J.K. Yu, S.C. Pu, Y.M. Cheng, P.T. Chou,
Y.H. Chou, H.T. Chiu, J. Phys. Chem. B 108 (2004) 10687.
[20] K.A. Connors, Binding Constants, Wiley, New York, 1987.
[21] (a) Y.-H. Song, S.-J. Yeh, C.-T. Chen, Y. Chi, C.-S. Liu, J.-K. Yu,
Y.-H. Hu, P.-T. Chou, S.-M. Peng, G.-H. Lee, Adv. Funct. Mater.
14 (2004) 1221;
[1] C.-T. Chen, W.-P. Huang, J. Am. Chem. Soc. 124 (2002) 6246.
[3] (a) V. Amendola, L. Fabbrizzi, M. Lincchelli, C. Mangano, P.
Pallavicini, L. Parodi, A. Poggi, Coord. Chem. Chem. Rev. 190–192
(1999) 649;
(b) J. Liu, Y. Lu, J. Am. Chem. Soc. 125 (2003) 6642;
(c) J. Li, Y. Lu, J. Am. Chem. Soc. 122 (2000) 10466;
(d) M. Sun, D. Shangguan, H. Ma, L. Nie, X. Li, S. Xiong, G. Liu,
W. Thiemann, Biopolymers 72 (2003) 413;
(e) F.-Y. Wu, S.W. Bae, J.-I. Hong, Terahedron Lett. 47 (2006)
8851;
(f) M. Kadarkaraisamy, G.A. Sykes, Inorg. Chem. 45 (2006)
779;