C O M M U N I C A T I O N S
rigid ethynyl phenyl N-tail to the ligand minimized the steric
interaction in the CR-Câ region and provided a moderate steric
volume beyond this region. This led to the formation of four
successive metal centers of the same ∆ configuration, followed by
a Λ, which resulted in a sextuple twisted chiral macrocycle. To
the best of our knowledge, this is the first sextuple twisted high-
nuclearity metallamacrocycle that has a Mo¨bius topology.
Acknowledgment. This work was supported by KRF (KRF-
2005-070-C00068), KOSEF (R01-2007-000-10167-0), and CBMH.
The authors also acknowledge PAL for beamline use (2007-2041-
17).
Supporting Information Available: Synthesis of the ligand and
1, crystallographic details of 1. This material is available free of charge
References
(1) (a) Farrell, J. R.; Mirkin, C. A.; Guzei, I. A.; Liable-Sands, L. M.;
Rheingold, A. L. Angew. Chem., Int. Ed. 1998, 37, 465-467. (b) Holliday,
B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40, 2022-2043. (c)
Szejtli, J. Chem. ReV. 1998, 98, 1743-1753. (d) Spitler, E. L.; Johnson,
C. A., II; Haley, M. M. Chem. ReV. 2006, 106, 5344-5386. (e) Leininger,
S.; Olenyuk, B.; Stang, P. J. Chem. ReV. 2000, 100, 853-908. (f)
Tasiopoulos, A. J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K. A.;
Christou, G. Angew. Chem., Int. Ed. 2004, 43, 2117-2121. (g) Fujita,
M. Chem. Soc. ReV. 1998, 27, 417-425. (h) Gianneschi, N. C.; Bertin,
P. A.; Nguyen, S. T.; Mirkin, C. A.; Zakharov, L. N.; Rheingold, A. L.
J. Am. Chem. Soc. 2003, 125, 10508-10509. (i) Yamanari, K.; Yamamoto,
S.; Ito, R.; Kushi, Y.; Fuyuhiro, A.; Kubota, N.; Fukuo, T.; Arakawa, R.
Angew. Chem., Int. Ed. 2001, 40, 2268-2271. (j) Mimassi, L.; Cordier,
C.; Guyard-Duhayon, C.; Mann, B. E.; Amouri, H. Organometallics 2007,
26, 860-864.
Figure 1. A stick diagram of chiral pentadecanuclear metallamacrocycle
1 with C3 symmetry. The -N-N- connectivities are shown in green. The
metal ions with ∆ configuration appear as blue spheres, and the metal ions
with Λ configuration appear as red spheres.
(2) (a) Heilbronner, E. Tetrahedron Lett. 1964, 5, 1923-1928. (b) Rzepa, H.
S. Chem. ReV. 2005, 105, 3697-3715.
(3) (a) Ajami, D.; Oeckler, O.; Simon, A.; Herges, R. Nature 2003, 426, 819-
821. (b) Herges, R. Chem. ReV. 2006, 106, 4820-4842. (c) Ajami, D.;
Hess, K.; Ko¨hler, F.; Na¨ther, C.; Oeckler, O.; Simon, A.; Yamamoto, C.;
Okamoto, Y.; Herges, R. Chem.sEur. J. 2006, 12, 5434-5445.
(4) Kui, S. C. F.; Huang, J.-S.; Sun, R. W.-Y.; Zhu, N.; Che, C.-M. Angew.
Chem., Int. Ed. 2006, 45, 4663-4666.
(5) (a) Tanda, S.; Tsuneta, T.; Okajima, Y.; Inagaki, K.; Yamaya, K.;
Hatakenaka, N. Nature 2002, 417, 397-398. (b) Patzke, G. R. Angew.
Chem., Int. Ed. 2003, 42, 972-974.
(6) (a) Rath, H.; Sankar, J.; PrabhuRaja, V.; Chandrashekar, T. K.; Joshi, B.
S.; Roy, R. Chem. Commun. 2005, 3343-3345. (b) Sprutta, N.; Latos-
Graz˘yn´ski, L. Chem.sEur. J. 2001, 7, 5099-5112. (c) Hinrichs, H.;
Boydston, A. J.; Jones, P. G.; Hess, K.; Herges, R.; Haley, M. M.; Hopf,
H. Chem.sEur. J. 2006, 12, 7103-7115. (d) Setsune, J.; Katakami, Y.;
Iizuna, N. J. Am. Chem. Soc. 1999, 121, 8957-8958. (e) Collins, S. K.;
Yap, G. P. A.; Fallis, A. G. Org. Lett. 2000, 2, 3189-3192.
(7) John, R. P.; Moon, D.; Lah, M. S. Supramol. Chem. 2007, 19, 295-308.
(8) (a) John, R. P.; Lee, K.; Kim, B. J.; Suh, B. J.; Rhee, H.; Lah, M. S.
Inorg. Chem. 2005, 44, 7109-7121. (b) Liu, S.-X.; Lin, S.; Lin, B.-Z.;
Lin, C.-C.; Huang, J.-Q. Angew. Chem., Int. Ed. 2001, 40, 1084-1087.
(c) John, R. P.; Park, J.; Moon, D.; Lee, K.; Lah, M. S. Chem. Commun.
2006, 3699-3701.
Figure 2. A section of the macrocyclic backbone that shows the double
twist and the turn in the direction of propagation. The metal ions are shown
as spheres and the ligand binding moieties as planes. The blue spheres have
∆ configuration, and the red spheres have Λ configuration. The blue arrows
represent a clockwise (+) rotation, and the red arrows represent an
counterclockwise (-) turn for successive ligand planes.
the N-terminal phenyl groups and three other interactions between
the salicyl C-H’s and ethynyl phenyl groups are identified in the
assembly. In addition, three intramolecular π‚‚‚π stacking interac-
tions between the ethynyl phenyl ring and the salicyl ring of
neighboring ligand units, and extensive van der Waals interactions,
support the assembly (Figure S6). One coordinated DMF molecule
per crystallographic asymmetric unit is lodged in a small pocket
created between the ligand frames of D- and B-labeled residues
using van der Waals interactions (Figure S7 and Table S2). We
believe that a rigid steric domain of the ligand with a narrow CR-
Câ region near the bridging domain and a bulky aromatic phenyl
end located away from the bridging domain induces the four
consecutive ∆ configurations for a double twist and the final Λ
configuration for a turn in the propagation direction in the
asymmetric unit. The combination of weak interactions, such as
C-H‚‚‚π and π‚‚‚π stacking interactions, and extensive van der
Waals interactions may be the reason for the stabilization of the
sextuple twisted pentadecanuclear assembly forming.
(9) John, R. P.; Lee, K.; Lah, M. S. Chem. Commun. 2004, 2660-2661.
(10) Moon, D.; Lee, K.; John, R. P.; Kim, G. H.; Suh, B. J.; Lah, M. S. Inorg.
Chem. 2006, 45, 7991-7993.
(11) The total sum of the twist angles calculated from the dihedral angles
between the two consecutive ligand planes in one asymmetric unit (∼260°)
does not make up the 360° for double twist in the asymmetric unit along
the propagation direction, as shown in Figure 2. This discrepancy is from
the fact that the calculation was performed using the ligand planes that
were not parallel to the direction of the propagation of the macrocyclic
backbone. For a more accurate calculation, we need to calculate the best-
fit straight line representing the propagation direction and the normal vector
residing at the ligand planes, and the twist angles obtained using this
information will form the required 360° for a double twist comprising
four consecutive ∼120° clockwise twists and a ∼120° counterclockwise
twist.
(12) The Mo¨bius topology is only possible in a metallamacrocycle which does
not contain any Sn symmetry. The metallamacrocycle having the chiral
sequence related by an Sn symmetry leads to the same extent of twist but
in an opposite direction, hence the net twist in an achiral metallamacrocycle
is always zero regardless of the individual sequence.
(13) The Flack parameter of the crystal was found to be 0.20(3). However,
the bulk crystals dissolved in chloroform did not show any CD activity,
which suggests that metallamacrocycle 1 in bulk is not homochiral but
racemic.
In conclusion, we have constructed a unique C3 symmetric
pentadecanuclear metallamacrocycle using a pentadentate bridging
ligand, N-phenylpropiolyl salicylhydrazide. The introduction of a
JA075945W
9
J. AM. CHEM. SOC. VOL. 129, NO. 46, 2007 14143