2532
W. Harnying et al.
LETTER
(7) (a) Enders, D.; Vignola, N.; Berner, O. M. Angew. Chem.
Int. Ed. 2002, 41, 109; Angew. Chem. 2002, 114, 116.
(b) Enders, D.; Vignola, N.; Berner, O. M.; Harnying, W.
Tetrahedron 2005, 61, 3231.
(8) (a) Enders, D.; Berner, O. M.; Vignola, N. Chem. Commun.
2001, 2498. (b) Enders, D.; Berner, O. M.; Vignola, N.;
Harnying, W. Synthesis 2002, 1945.
(9) (a) Enders, D.; Harnying, W.; Vignola, N. Synlett 2002,
1727. (b) Enders, D.; Harnying, W.; Vignola, N. Eur. J. Org.
Chem. 2003, 20, 3939.
(10) Enders, D.; Harnying, W. ARKIVOC 2004, (ii), 181.
(11) Enders, D.; Harnying, W.; Raabe, G. Synthesis 2004, 590.
(12) Enders, D.; Harnying, W. Synthesis 2004, 2910.
(13) Enders, D.; Adelbrecht, J.-C.; Harnying, W. Synthesis 2005,
2962.
(14) General Procedure for Aldol Reactions of the Sulfonate
1: To a cooled (–78 °C) solution of freshly generated lithium
diisopropylamide [prepared by treatment of diisopropyl-
amine (1.1 mmol) in anhyd THF (3 mL) with n-BuLi (1
mmol) at –78 °C for 30 min] was added dropwise a solution
of the sulfonate 1 (1 mmol) in THF (2 mL) under N2. After
stirring for 1 h, a mixture of aldehyde (2 mmol) and 1 M
ZnCl2 in THF (1.2 mmol) was added dropwise. The reaction
mixture was stirred at –78 °C for 1 h and then quenched with
sat. NH4Cl. The mixture was poured into an ice-cooled 1 N
HCl solution (10 mL) and extracted with EtOAc. The
combined organic layers were washed with H2O, brine and
dried over Na2SO4. The solvent was removed under reduced
pressure to give the crude product. The diastereomeric ratio
was determined at this stage by 1H NMR (400 MHz). The
crude product was purified by flash column chromatography
(SiO2, EtOAc–hexane) to give the aldol product 2.
(1S,2R)-2a: colorless solid; de ≥ 98%; mp 103–104 °C;
[a]D29 +93.1 (c = 0.105, EtOH). IR (KBr): 3446 (s), 2986,
1630, 1375, 1344 (s), 1217, 1150 (s), 1059 (s), 1017 (s), 886,
705 cm–1. 1H NMR (400 MHz, CDCl3): d = 1.29, 1.30, 1.37,
1.57 (4 ꢀ s, 12 H, 4 ꢀ Me), 3.65 (br s, 1 H, OH), 3.75 (dd,
J = 6.6, 8.7 Hz, 1 H, CHH), 3.95 (dd, J = 6.7, 8.7 Hz, 1 H,
CHH), 4.09 [dd, J = 4.1, 8.6 Hz, 1 H, CH2CHCHO), 4.25 (dt,
J = 4.1, 6.6 Hz, 1 H, CH2CHCHO), 4.46 [t, J = 4.4 Hz, 1 H,
OCHCH(OC)2], 4.47 (d, J = 2.2 Hz, 1 H, CHSO3), 4.81 (dd,
J = 4.7, 8.6 Hz, 1 H, CHOSO2), 5.71 [d, J = 3.7 Hz, 1 H,
CH(OC)2], 5.80 (br d, J = 1.8 Hz, 1 H, CHOH), 7.01–7.30
(m, 10 H, ArH). 13C NMR (100 MHz, CDCl3): d = 25.2,
26.1, 26.6, 26.7 (4 ꢀ Me), 65.4 (CH2), 72.1 (CHOH), 74.0
(CHSO3), 74.6, 76.4, 76.9, 77.6 (4 ꢀ CHO), 103.8 (OCHO),
110.3, 113.8 [2 ꢀ C(CH3)2], 126.0 (ArCH), 127.76 (ArC),
127.83, 128.1, 128.2, 129.1, 131.3 (ArCH), 139.2 (ArC). MS
(EI, 70 eV): m/z (%) = 520 (0.2)[M+], 505 (22), 399 (16), 341
(23), 292 (17), 197 (31), 167 (31), 127 (51), 91 (100), 77
(33), 55 (17). Anal. Calcd for C26H32O9S (520.59): C, 59.99;
H, 6.20. Found: C, 60.13; H, 6.19.
(15) (1S,2R)-4: colorless solid; de, ee ≥ 98%; mp 169–170 °C;
[a]D29 +122.0 (c = 0.115, EtOH). IR (KBr): 3467 (s), 1220,
1163 (s), 1049 (s), 795, 713, 651, 572 cm–1. 1H NMR (400
MHz, CDCl3–CD3OD): d = 3.87 (br s, 1 H, OH), 4.02 (d,
J = 1.8 Hz, 1 H, CHSO3), 5.71 (d, J = 1.8 Hz, 1 H, CHOH),
6.93–6.97 (m, 2 H, ArH), 7.02–7.11 (m, 6 H, ArH), 7.17–
7.21 (m, 2 H, ArH). 13C NMR (100 MHz, CDCl3–CD3OD):
d = 71.7, 73.1 (2 ꢀ CH), 126.0, 127.0, 127.19, 127.22, 127.6,
130.7 (ArCH), 132.5, 140.7 (2 ꢀ ArC). MS (EI, 70 eV):
m/z (%) = 179 (100)[PhCH=C(Ph)+], 165 (55), 152 (20).
(16) epi-4 obtained from the cleavage of the anti isomer 3a under
the same conditions exhibits a different 1H NMR spectrum.
1H NMR (400 MHz, CDCl3–CD3OD): d = 3.67 (br s, 1 H,
OH), 4.16 (d, J = 10.1 Hz, 1 H, CHSO3), 5.29 (d, J = 10.1
Hz, 1 H, CHOH), 7.00–7.30 (m, 10 H, ArH).
Synlett 2007, No. 16, 2529–2532 © Thieme Stuttgart · New York