3374
F.-X. Ding et al. / Bioorg. Med. Chem. Lett. 20 (2010) 3372–3375
Table 4
CO2Et
N
CO2Et
b
CO2Et
N
N
CYP2C8 and 2C9 inhibition for compoundsa
H2N
N
a
HN
O2N
N
N
N
12ea
12eb
CO2Et
Compd
1b
2
3a
4a
4b
7
9a
12e
12ec
CYP2C8 IC50
CYP2C9 IC50
(
(
l
l
M)
M)
<0.4
<0.4
2.7
2.5
—
15
19
15
34
22
>100
>100
—
>50
7.7
23
CO2Et
N
N
c,d
e
f
AcO
N
HO
N
N
N
N
a
The CYP2C8 inhibition assay in human liver microsomes used taxol and
12ed
12ee
montelukast as the substrate and positive control, respectively. The CYP2C9 inhi-
bition assay in human liver microsomes used diclofenac and sulfaphenazole as the
substrate and positive control, respectively.
CO2Et
N
CH2OH
N
g
h
PMBO
N
PMBO
N
N
12eg
12ef
CO2Me
CO2Me
CH2Br
N
N
j,k
i
Table 5
PMBO
N
PMBO
PMBO
N
Mouse or rat PKa
N
N
12ei
12eh
Compd F%
Cl (mL/min/ Vdss (L/
Cmax
M)
T1/2
(h)
AUCpo
(lM h kg/mg)
N
CO2H
N
CONH2
p,q
l,m
kg)
4.6 18
21 17
2.5 26
52
46
kg)
(
l
N
PMBO
o
N
N
1bb
3bb
4ab
7b
0.35
3.56
0.88
0.68
0.40
0.36
0.53
0.93
0.48
0.03
4.78
11.53
0.03
2.0
3.5
1.1
4.8
3.3
0.74
5.5
0.11
0.58
0.1
N
12ek
12ej
O
O
O
O
O
n
3.5
1.2
6.5
O
F
9ab
12dc
12ec
19
0.06
1.6
O
OTf
4.5 28
39 8.6
12el
12em
12en
TfO
1.58
F
O
O
a
Formulations: 0.2 mg/mL ethanol/PEG/water (10:40:50). IV dose: 1 mg/kg
(n = 3). PO dose: 2 mg/kg (n = 3). Blood concentration was determined by LC/MS/MS
O
F
s
O
F
r
F
following protein precipitation with acetonitrile.
O
O
b
Mouse PK.
Rat PK.
c
12eo
12ep
12eq
F
F
F
CO2Me
H
N
t
PMBO
N
N
N
O
F
12er
an aryl group in 12e increased the CYP inhibition, but was still sig-
nificantly better than the lead compound 1b.
CO2H
u,v
H
N
F
F
HO
N
Besides reducing CYP2C8 and 2C9 liability (Table 4), in general,
the replacement of the inner phenyl group with a pyrazole, and the
anthranilide moiety with a cyclohexenamide provided significantly
improved mouse or rat PK parameters (7 and 9a vs 1b, 3b, and 4a
in Table 5). In addition, the fluoroaryl substitution position of the
cyclohexenyl group appeared to have a substantial impact on rat
PKs of analogs, as exemplified by 12d and 12e. With respect to
12d, compound 12e had an eightfold higher bioavailability and half
life, a threefold lower clearance, and a 26-fold higher oral expo-
sure. Comparing 3b and 4a, it appeared that the extra methyl
group present in 4a led to the significant reduction of Cmax, half life,
normalized AUC and bioavailability.
The synthesis of analog 12e, as a representative example, was
achieved over 22 steps in total as shown in Scheme 1. The prepa-
ration of the key intermediate 12ek was commenced with com-
mercially available pyrazole 12ea. The nucleophilic aromatic
substitution of 2-bromo-5-nitropyridine with 12ea provided
12eb. The reduction of the nitro group in 12eb was followed by a
three-step sequence to convert the resulting amino group to a hy-
droxyl group via an intermediate diazonium tetrafluoroborate salt.
The hydroxyl group of 12ee was subsequently protected as a PMB
ether. The two-carbon chain extension led to carboxylic acid 12ej,
which was then converted to amide 12ek through an active succ-
inimidyl ester intermediate in excellent yield. Intermediate 12eq
was synthesized in six steps starting from 12el. The Pd-catalyzed
amidation of 12eq with 12ek formed 12er. Finally, the deprotec-
tion of the PMB group followed by hydrolysis afforded the desired
product 12e. The overall synthesis has a convergent nature.
In conclusion, we have identified a new class of pyrazolyl propi-
onyl cyclohexenamides as highly active full agonists for the niacin
receptor GPR109A. The sequential employment of pyrazole,
hydroxypyridine, cyclohexene, and an aryl substitution of cyclo-
hexene eventually led to the discovery of 12e with excellent activ-
ity against GPR109A, very weak CYP2C8 and 2C9 inhibition, and a
good rat PK profile.
N
N
O
12e
F
Scheme 1. Reagents and conditions: (a) 2-bromo-5-nitropyridine, NaH, DMF, 0 °C
to rt, 0.5 h, 88%; (b) Zn, AcOH, 60 °C, 0.5 h, 99%; (c) NaNO2, 40% HBF4, 0 °C, 2 h; (d)
Ac2O, 65 °C, 16 h, 52% in two steps; (e) cat. H2SO4, EtOH, reflux, 16 h, 97%; (f) NaH,
PMB-Cl, cat. NaI, DMF, 90 °C, 1 h, 95%; (g) LiBH4, THF, reflux, 24 h, 100%; (h) Ph3P,
NBS, pyridine, CH2Cl2, 0 °C, 1.5 h, 77%; (i) dimethyl malonate, NaH, DMF, 0 °C to rt,
1 h, 98%; (j) LiOH, THF/MeOH/H2O (3:1:1), rt, 1 h, 92%; (k) DMF, 130 °C, 20 min,
94%; (l) N-hydroxy succinimide, EDCI, CH2Cl2, 3 h, 99%; (m) 28% NH3/H2O; dioxane,
2 h, 97%; (n) LiHMDS, 2-(N,N-bistrifluoro-methylsulfonylamino)-5-chloropyridine,
THF, À78 °C to rt, 2 h, 72%; (o) 3,5-difluorophenylboronic acid, Pd(PPh3)2Cl2,
Na2CO3, THF, rt, 2 h, 86%; (p) H2, 10% Pd/C, MeOH, rt, 16 h; (q) 3 N HCl, THF, rt, 5 h,
80% in two steps; (r) LiHMDS, methyl cyanoformate, THF, À78 °C to rt, 3 h, 62%; (s)
NaH, 2-(N,N-bis-trifluoromethylsulfonylamino)-5-chloropyridine, THF, 0 °C to rt,
2 h, 68%; (t) Pd2(dba)3, 12ek, xantphos, Cs2CO3, dioxane, 80 °C, 16 h; 49%; (u) TFA,
triisopropylsilane, CH2Cl2; 0 °C to rt, 20 min; (v) LiOH, THF/MeOH/H2O(3:1:1), 0 °C
to rt, 15 h, 40% in two steps.
References and notes
1. (a) Elvehjem, C. A.; Madden, R. J.; Strong, F. M.; Wooley, D. W. J. Biol. Chem.
1938, 123, 137; (b) Holman, W. I.; De Lange, D. J. Nature 1950, 165, 112.
2. (a) Mack, W. J.; Selzer, R. H.; Hodis, H. N.; Erickson, J. K.; Liu, C. R.; Liu, C. H.;
Crawford, D. W.; Blankenhorn, D. H. Stroke 1993, 24, 1779; (b) Nikkila, E. A.;
Viikinkoski, P.; Valle, M.; Frick, M. H. Br. Med. J. 1984, 289, 220; (c) Pritzker, L. B.
Crit. Rev. Clin. Lab. Sci. 1998, 35, 603; (d) Taylor, A. J.; Sullenberger, L. E.; Lee, H.
J.; Lee, J. K.; Grace, K. A. Circulation 2004, 110, 3512; (e) Carlson, L. A. J. Int. Med.
2005, 258, 94.
3. Knopp, R. H. N. Eng. J. Med. 1999, 341, 498.
4. (a) The Coronary Drug Project Research Group J. Am. Med. Assoc. 1975, 231, 360;
(b) Canner, P. L.; Berge, K. G.; Wenger, N. K.; Stamler, J.; Friedman, L.; Prineas, R.
J.; Friedewald, W. J. Am. Coll. Cardiol. 1986, 8, 1245.
5. Carlson, L. A.; Rosenhamer, G. Acta Med. Scand. 1988, 223, 405.
6. Brown, B. G.; Zhao, X.-Q.; Chait, A.; Fisher, L. D.; Cheung, M.; Morse, J. S.;
Dowdy, A. A.; Marino, E. K.; Bolson, E. L.; Alaupovic, P.; Frohlich, J.; Albers, J. J. N.
Eng. J. Med. 2001, 345, 1583.
7. (a) Schaub, A.; Futterer, A.; Pfeffer, K. Eur. J. Immunol. 2001, 31, 3714; (b) Wise,
A.; Foord, S. M.; Fraser, N. J.; Barnes, A. A.; Elshourbagy, N.; Eilert, M.; Ignar, D.