Communications
Table 2: Iron-catalyzedcross-coupling between primary alkyl bromides
[a]
andaromatic Grignardreagents.
Entry
Alkyl halide
Product
Yield
[%]
1
2
3
15
16
17
75[b]
70[b]
76
4
5
6
18
19
20
72
50
39
Scheme 5. Large-scale preparation of sec-butylbenzene.
non-hygroscopic and cheap complex that is very easy to
prepare.
[a] The aryl Grignard reagent (13 mmol) was added dropwise over
45 min to a solution of alkyl bromide (10 mmol), [Fe(acac)3] (0.5 mmol),
TMEDA (1.0 mmol), andHMTA (0.5 mmol) in THFat 0 8C under stirring.
[b] The reaction was performedon a 50 mmol scale.
Received: February 18, 2007
Published online: April 30, 2007
Keywords: cross-coupling · Grignardreagents ·
.
homogeneous catalysis · iron · sustainable chemistry
Table 3: Cross-coupling between aryl Grignardreagents andsecondary
alkyl halides[a] in the presence of [(FeCl3)2(tmeda)3].
Entry
Alkyl halide
Product
Yield
[%]
[1] a) G. Cahiez, P. Y. Chavant, E. Metais, Tetrahedron Lett. 1992, 33,
5245; b) G. Cahiez, S. Marquais, Tetrahedron Lett. 1996, 37, 1773;
c) G. Cahiez, H. Avedissian, Synthesis 1998, 1199; d) C. Duplais, F.
Bures, T. Korn, I. Sapountzis, G. Cahiez, P. Knochel, Angew.
1
2
2
9
81
92
Chem. 2004, 116, 3028; Angew.Chem.Int.Ed.
2004, 43, 2968.
[2] For exhaustive reviews on iron-mediated coupling reactions, see:
a) A. Fürstner, R. Martin, Chem.Lett. 2005, 34, 624; b) C. Bolm, J.
Legros, J. Le Paih, L. Zani, Chem.Rev. 2004, 104, 6217; c) H.
Shinokubo, K. Oshima, Eur.J.Org.Chem. 2004, 2071.
3
21
83
[3] a) T. Nagano, T. Hayashi, Org.Lett. 2004, 6, 1 297; b) R. B.
Bedford, D. W. Bruce, R. M. Frost, J. W. Goodby, M. Hird, Chem.
Commun. 2004, 2822; c) R. B. Bedford, M. Betham, D. W. Bruce,
A. A. Danopoulos, R. M. Frost, M. Hird, J.Org.Chem. 2006, 71,
1104; d) R. B. Bedford, D. W. Bruce, R. M. Frost, M. Hird, Chem.
Commun. 2005, 4161; e) R. Martin, A. Fürstner, Angew.Chem.
4
5
5
91
75
15
[a] The aryl Grignard reagent (13 mmol) was added dropwise over
45 min to a solution of alkyl bromide (10 mmol) and [(FeCl3)2(tmeda)3]
(0.15 mmol) in THF at room temperature under stirring.
2004, 116, 4045; Angew.Chem.Int.Ed.
2004, 43, 3955; f) M.
Nakamura, K. Matsuo, S. Ito, E. Nakamura, J.Am.Chem.Soc.
2004, 126, 3686.
[4] See reference [3f] and Table S2 in the Supporting Information.
[5] a) I. D. Hills, M. R. Netherton, G. C. Fu, Angew.Chem. 2003, 115,
5927; Angew.Chem.Int.Ed. 2003, 42, 5749. For general reviews
on the use of alkyl halides to perform cross-coupling reactions,
see: b) A. C. Frisch, M. Beller, Angew.Chem. 2005, 117, 680;
Angew.Chem.Int.Ed. 2005, 44, 674; c) M. R. Netherton, G. C.
Fu, Adv.Synth.Catal. 2004, 346, 1525; d) D. J. Cꢀrdenas, Angew.
Chem. 2003, 115, 398; Angew.Chem.Int.Ed. 2003, 42, 384, and
references therein.
amount of TMEDA required is dramatically lowered (from
120% to 5%) and 3% FeCl3 is used instead of 5%. In
addition, the yields are slightly better (5–10% higher) and the
coupling is performed at room temperature instead of 08C.
Finally, note that contrary to FeCl3, the complex [(FeCl3)2-
(tmeda)3] is not hygroscopic and can be stored at room
temperature without any special precautions.
Finally, we applied our cross-coupling procedures on a
large scale. The results (unoptimized yields) are described in
Scheme 5.
In summary, we have disclosed herein two efficient eco-
friendly iron-catalyzed procedures to couple secondary and
primary alkyl halides with aromatic Grignard reagents, using
two new catalytic systems, [Fe(acac)3]/HMTA/TMEDA
(1:1:2) and the complex [(FeCl3)2(tmeda)3]. To the best of
our knowledge, HMTA has never been employed as a ligand
for cross-coupling reactions until now, while the second
catalyst [(FeCl3)2(tmeda)3] has not been described and is a
[6] The mechanism is based on the Fe0/FeII couple. A similar catalytic
cycle can also be written by using a FeI/FeIII couple (see S. M.
Neumann, J. K. Kochi, J.Org.Chem. 1975, 40, 599 and R. S.
Smith, J. K. Kochi, J.Org.Chem. 1976, 41, 502) or a FeÀII/Fe0
couple as recently proposed (A. Fürstner, A. Leitner, M. Mꢁndez,
H. Krause, J.Am.Chem.Soc. 2002, 124, 13856; A. Fürstner, A.
Leitner, Angew.Chem. 2002, 114, 632; Angew.Chem.Int.Ed.
2002, 41, 609). Iron ate complexes have been isolated recently:
a) A. Fürstner, H. Krause, C. W. Lehman, Angew.Chem. 2006,
118, 454; Angew.Chem.Int.Ed.
2006, 45, 440; b) P. J. Alonso,
A. B. Arauzo, J. Forniꢁs, M. A. Garcꢂa-Montforte, A. Martꢂn, J. I.
Martꢂnez, B. Menjꢃn, C. Rillo, J. J. Sꢀiz-Garitaonandia, Angew.
Chem. 2006, 118, 6859; Angew.Chem.Int.Ed.
2006, 45, 6707.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4364 –4366