10 of 11
HAO ET AL.
4.3.6 | Synthesis of complex 6
ORCID
Complex 6 was synthesized in the same way as described
above for complex 5 using L6H (0.66 g, 1.00 mmol),
nBuLi (2.00 M in hexane, 0.50 ml, 1.00 mmol), and
VCl3(THF)3 (0.38 g, 1.00 mmol). Complex 6 was obtained
as dark red powders (yield 0.69 g, 74.3%). Anal. Calcd for
C57H58Cl2NO3V(%): C, 73.86; H, 6.31; N, 1.51. Found: C,
REFERENCES
[1] a) W. L. Carrick, J. Am. Chem. Soc. 1958, 80, 6455;
b) W. L. Carrick, R. W. Kluiber, E. F. Bonner, L. H. Wartman,
F. M. Rugg, J. Smyth, J. Am. Chem. Soc. 1960, 82, 3883;
c) G. Natta, G. Mazzanti, A. Valvassori, G. Sartori,
D. Fiumani, J. Polym. Sci. A 1961, 51, 411; d) G. W. Phillips,
73.69; H, 6.47; N, 1.69. μeff = 2.79μB. IR (KBr): ν (cm−1
)
W. L. Carrick, J. Polym. Sci.
A
1962, 59, 401;
3008w, 2,930 m, 2,867 m, 1,612 m, 1495vs, 1,446 m,
1397s, 868 m, 822 s, 683w, 600 m, 509w.
e) V. E. Junghanns, A. Gumboldt, G. Bier, Makromol. Chem.
1962, 58, 18; f) D. L. Christman, G. I. Keim, Macromolecules
1968, 1, 358.
[2] a) Y. Doi, S. Ueki, T. Keii, Macromolecules 1979, 12, 814;
b) Y. Doi, T. Koyama, K. Soga, Makromol. Chem. 1985, 186,
11; c) H. Hagen, J. Boersma, G. van Koten, Chem. Soc. Rev.
2002, 31, 357; d) S. Gambarotta, Coord. Chem. Rev. 2003, 237,
229; e) K. Nomura, W. Zhang, Chem. Sci. 2010, 1, 161;
f) C. Redshaw, Dalton Trans. 2010, 39, 5595. K. Nomura,
S. Zhang, Chem. Rev. 2010, 111, 2342; g) G. Zanchin,
L. Vendier, I. Pierro, F. Bertini, G. Ricci, C. Lorber, G. Leone,
Organometallics 2018, 37, 3181.
[3] a) Y. Nakayama, H. Bando, Y. Sonobe, Y. Suzuki, T. Fujita,
Chem. Lett. 2003, 32, 766; b) Y. Nakayama, H. Bando,
Y. Sonobe, T. Fujita, J. Mol. Catal. A: Chem. 2004, 213, 141.
[4] a) J. Q. Wu, L. Pan, N. H. Hu, Y. S. Li, Organometallics 2008,
27, 3840; b) J. Q. Wu, L. Pan, S. R. Liu, L. P. He, Y. S. Li,
J. Polym. Sci., Part a: Polym. Chem. 2009, 47, 3573; c) J. Q. Wu,
L. Pan, Y. G. Li, S. R. Liu, Y. S. Li, Organometallics 2009, 28,
1817; d) B. C. Xu, T. Hu, J. Q. Wu, N. H. Hu, Y. S. Li, Dalton
Trans. 2009, 41, 8854; e) J. Q. Wu, B. X. Li, S. W. Zhang,
Y. S. Li, J. Polym. Sci., Part a: Polym. Chem. 2010, 48, 3062; f)
J. Q. Wu, Y. G. Li, B. X. Li, Y. S. Li, Chin. J. Polym. Sci. 2011,
29, 627; g) J. B. Wang, L. P. Lu, J. Y. Liu, H. L. Mu, Y. S. Li,
J. Mol. Catal. A: Chem. 2015, 398, 289.
4.4 | Ethylene polymerization
experiments
The ethylene polymerization experiments were carried
out as follows: a dry 100 mL steel autoclave with a mag-
netic stirrer was charged with 55 ml of toluene,
thermostated at the desired temperature, and saturated
with ethylene (1.0 atm). The polymerization reaction was
started by addition of a mixture of the catalyst and
co-catalyst in toluene (5 ml) at the same time. The vessel
was pressurized to 5 atm with ethylene immediately, and
the pressure was maintained by continuous feeding of
ethylene. The mixture was stirred at the desired tempera-
ture for the desired time period. The polymerization was
then quenched by injecting an acidic ethanol solution
containing HCl (3 M). The polymer was collected by
filtration, washed with water and ethanol, and dried to a
constant weight under vacuum.
[5] a) K. Nomura, A. Sagara, Y. Imanishi, Chem. Lett. 2001, 30, 36;
b) K. Nomura, A. Sagara, Y. Imanishi, Macromolecules 2002,
35, 1583; c) W. Wang, J. Yamada, M. Fujiki, K. Nomura, Cat.
Com. 2003, 4, 159; d) W. Wang, K. Nomura, Macromolecules
2005, 38, 5905; e) Y. Onishi, S. Katao, M. Fujiki, K. Nomura,
Organometallics 2008, 27, 2590; f) K. Nomura, A. Igarashi,
S. Katao, W. Zhang, W. H. Sun, Inorg. Chem. 2013, 52, 2607;
g) W. Wang, K. Nomura, Adv. Synth. Catal. 2006, 348, 743;
h) A. Igarashi, E. L. Kolychev, M. Tamm, K. Nomura, Organo-
metallics 2016, 35, 1778; i) K. Nomura, T. Mitsudome,
A. Igarashi, G. Nagai, K. Tsutsumi, T. Ina, T. Omiya,
H. Takaya, S. Yamazoe, Organometallics 2017, 36, 530;
j) C. Bariashir, C. Huang, G. A. Solan, W.-H. Sun, Coord.
Chem. Rev. 2019, 385, 208.
[6] a) C. Redshaw, L. Warford, S. H. Dale, M. R. J. Elsegood,
Chem. Commun. 2004, 1954; b) C. Redshaw, M. A. Rowan,
D. M. Homden, S. H. Dale, M. R. Elsegood, S. Matsui,
S. Matsuura, Chem. Commun. 2006, 3329; c) D. M. Homden,
C. Redshaw, D. L. Hughes, Inorg. Chem. 2007, 46, 10827; d)
L. Clowes, M. Walton, C. Redshaw, Y. Chao, A. Walton,
P. Elo, V. Sumerin, D. L. Hughes, Cat. Sci. Technol. 2013, 3,
152; e) J. Ma, K. Q. Zhao, M. J. Walton, J. A. Wright,
J. W. Frese, M. R. Elsegood, Q. F. Xing, W. H. Sun,
C. Redshaw, Dalton Trans. 2014, 43, 8300; f) J. Ma,
4.5 | Crystallography
The crystals were mounted on a glass fiber using the oil
drop. Data obtained with the ω-2θ□ scan mode were col-
lected on a Bruker SMART 1000 CCD diffractometer with
graphite-monochromated Kα radiation (λ = 0.71073 Å).
The structures were solved using direct methods, while
further refinement with full-matrix least squares on F2
was obtained with the SHELXTL program package. All
non-hydrogen atoms were refined anisotropically.
Hydrogen atoms were introduced in calculated positions
with the displacement factors of the host carbon atoms.
The crystal data and summary of X-ray data collection
are given in Table S1 in Supporting Information.
ACKNOWLEDGMENTS
We thank financial supports from the National Natural
Science Foundation of China for project Nos. 21574052,
U1462111, 51673078, 21603082.