Organic Letters
Letter
5587. (g) Sivamuthuraman, K.; Kumarswamyreddy, N.; Kesavan, V. J.
Org. Chem. 2017, 82, 10812−10822. (h) Wang, Y.; Liu, X.; Deng, L. J.
Am. Chem. Soc. 2006, 128, 3928−3930. (i) Capuzzi, M.; Perdicchia,
D.; Jørgensen, K. A. Chem. - Eur. J. 2008, 14, 128−135. (j) Yu, J.-S.;
Liao, F.-M.; Gao, W.-M.; Liao, K.; Zuo, R.-L.; Zhou, J. Angew. Chem.,
Int. Ed. 2015, 54, 7381−7385. (k) Fu, J.; Shang, H.; Wang, Z.; Chang,
L.; Shao, W.; Yang, Z.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52,
4198−4202. (l) Akiyama, T.; Katoh, T.; Mori, K. Angew. Chem., Int.
Ed. 2009, 48, 4226−4228. (m) Yan, L.; Huang, G.; Wang, H.; Xiong,
F.; Peng, H.; Chen, F. Eur. J. Org. Chem. 2018, 99−103.
(8) (a) He, W.; Jing, L.; Qin, D.; Wang, R.; Xie, X.; Wu, S.
Tetrahedron Lett. 2013, 54, 6363−6365. (b) He, W.; Jing, L.; Qin, D.;
Xie, X.; Wu, S.; Wang, R. Tetrahedron Lett. 2014, 55, 209−211.
(c) Du, C.; Li, L.; Li, Y.; Xie, Z. Angew. Chem., Int. Ed. 2009, 48,
7853−7856. (d) Liu, W.; Ali, S. Z.; Ammann, S. E.; White, M. C. J.
Am. Chem. Soc. 2018, 140, 10658−10662.
́
̌
́
́
̌
(9) Chalupa, D.; Vojackova, P.; Partl, J.; Pavlovic, D.; Necas, M.;
Svenda, J. Org. Lett. 2017, 19, 750−753.
̌
(10) For recent reports on enantioselective conjugate additions of
1,3-dicarbonyls to alkynones, see: (a) Bella, M.; Jørgensen, K. A. J.
Am. Chem. Soc. 2004, 126, 5672−5673. (b) Chen, Z.; Furutachi, M.;
Kato, Y.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2009, 48,
2218−2220. (c) Lan, Q.; Wang, X.; Shirakawa, S.; Maruoka, K. Org.
Process Res. Dev. 2010, 14, 684−686. (d) Zhang, Z.; Liu, X.; Wang, Z.;
Zhao, X.; Lin, L.; Feng, X. Tetrahedron Lett. 2014, 55, 3797−3801.
(11) (a) Bien, S.; Gillon, A. Tetrahedron Lett. 1974, 15, 3073−3074.
(b) Bien, S.; Gillon, A.; Kohen, S. J. Chem. Soc., Perkin Trans. 1 1976,
489−492. (c) Doyle, M. P.; Pieters, R. J.; Taunton, J.; Pho, H. Q.;
Padwa, A.; Hertzog, D. L.; Precedo, L. J. Org. Chem. 1991, 56, 820−
829. (d) See ref 8c.
(12) (a) Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1970, 43,
3607−3608. (b) Davey, A. E.; Taylor, R. J. K. J. Chem. Soc., Chem.
Commun. 1987, 25−27. (c) Davey, A. E.; Schaeffer, M. J.; Taylor, R. J.
K. J. Chem. Soc., Perkin Trans. 1 1992, 2657−2666. (d) Kraus, G. A.;
Sy, J. O. J. Org. Chem. 1989, 54, 77−83. (e) Truong, P.; Xu, X.; Doyle,
M. P. Tetrahedron Lett. 2011, 52, 2093−2096.
(13) For the recent reviews on single-flask (one-pot) operations in
synthesis, see: (a) Vaxelaire, C.; Winter, P.; Christmann, M. Angew.
Chem., Int. Ed. 2011, 50, 3605−3607. (b) Hong, B. C.; Raja, A.;
Sheth, V. M. Synthesis 2015, 47, 3257−3285. (c) Hayashi, Y. Chem.
Sci. 2016, 7, 866−880.
(14) (a) Evans, D. A.; Seidel, D. J. Am. Chem. Soc. 2005, 127, 9958−
9959. (b) Evans, D. A.; Mito, S.; Seidel, D. J. Am. Chem. Soc. 2007,
129, 11583−11592.
(15) (a) Tae, J.; Kim, K.-O. Tetrahedron Lett. 2003, 44, 2125−2128.
(b) See ref 10a.
(16) We have reported previously that silica gel readily promotes the
1,4-addition (see ref 9).
(17) The observed Z-selectivity is suggested to be an outcome of a
kinetic protonation of an allenolate intermediate from the more
accessible π-face. The exact role of nickel(II)−diamine 7 in this
process is unclear, as Z-selective additions were also observed with
N,N-diisopropylethylamine as the catalyst (see SI).
(18) The opposite absolute configuration at C2 (S) can be obtained
using an enantiomeric nickel(II)−diamine catalyst [(R,R)-7; see ref
9].
(19) See ref 7h. It is worth noting that cupreidine catalyst 8
performed poorly with terminal alkynones as π-electrophiles (see SI).
(20) Li, H.; Wang, Y.; Tang, L.; Deng, L. J. Am. Chem. Soc. 2004,
126, 9906−9907.
(21) The opposite absolute configuration at C2 (R) can be obtained
using a cupreine-based catalyst (structure 66 in SI), though with
lower levels of enantioselectivity [e.g., adduct 35 (0 °C): er = 13:87/
14:86; adduct 39 (0 °C): er = 9:91/17:83].
E
Org. Lett. XXXX, XXX, XXX−XXX