10.1002/chem.201805530
Chemistry - A European Journal
COMMUNICATION
2008, 350, 1168–1176; d) A. Stumpf, M. Reynolds, D. Sutherlin, S.
Babu, E. Bappert, F. Spindler, M. Welch, J. Gaudino, Adv. Synth. Catal.
2011, 353, 3367–3372; e) I. G. Smilović, E. Casas-Arcé, S. J.
Roseblade, U. Nettekoven, A. Zanotti-Gerosa, M. Kovačevič, Z. Časar,
Angew. Chem. Int. Ed. 2012, 51, 1014–1018; Angew. Chem. 2012, 124,
1038–1042; f) S. J. Roseblade, I. G. Smilović, Z. Časar, Tetrahedron
2014, 70, 2654–2660; g) S. M. King, X. Ma, S. B. Herzon, J. Am. Chem.
Soc. 2014, 136, 6884–6887.
[16] The dimerized Wurtz-type products 5 were also formed in the absence
of H2, (with and without added TEMPO). We speculate that a polar
copper-catalyzed process not involving H2 is responsible for the
formation of these products, as in the absence of a copper catalyst,
neither of the products 3–5 were detected.
[17] Unfunctionalized allylic chlorides such as 9b could be fully converted at
H2 pressure as low as 25 bar. At even lower pressures, the conversion
and regioselectivity deteriorated and unwanted side-reactions (such as
the nucleophilic displacement of the allylic chloride by the tert-butoxide
anion) were observed. For the substrate scope, high D2 or H2 pressure
(90 bar) was applied to ensure full conversion of all substrates after
48 h. See the Supporting Information for details.
[5]
[6]
[7]
For reviews, see: a) M. A. Keane, ChemCatChem 2010, 3, 800–821; b)
F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2002, 102, 4009–4092.
P. G. M. Wuts, T. W. Greene, Greene’s protective groups in organic
synthesis, Wiley, Hoboken, 2014.
For related allylic transpositions with H2 and heterogeneous catalysts,
see: a) D. D. Caspi, N. K. Garg, B. M. Stoltz, Org. Lett. 2005, 7, 2513–
2516; b) A. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K.
Kaneda, Chem. Commun. 2012, 48, 6723–6725.
[18] The double bond configuration has been found to be crucial in other
copper(I)-catalyzed allylic substitutions, see: a) A. Harada, Y. Makida, T.
Sato, H. Ohmiya, M. Sawamura, J. Am. Chem. Soc. 2014, 136, 13932–
13939; b) Y. Yasuda, H. Ohmiya, M. Sawamura, Angew. Chem. Int. Ed.
2016, 55, 10816–10820; Angew. Chem. 2016, 128, 10974–10978.
[19] a) T. G. Gant, J. Med. Chem. 2014, 57, 3595–3611; b) C. S. Elmore in
Annual Reports in Medicinal Chemistry, 44 (Ed.: J. E. Macor), Elsevier,
Amsterdam, 2009, pp. 515–534.
[8]
The activation of H2 along Cu–O-bonds has been put forward in the
literature: a) J. Halpern, J. Phys. Chem. 1959, 63, 398–403; b) A. J.
Chalk, J. Halpern, J. Am. Chem. Soc. 1959, 81, 5852–5854; c) G. V.
Goeden, K. G. Caulton, J. Am. Chem. Soc. 1981, 103, 7354–7355.
N. P. Mankad, D. S. Laitar, J. P. Sadighi, Organometallics 2004, 23,
3369–3371.
[9]
[20] a) J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew. Chem. Int. Ed.
2007, 46, 7744–7765; Angew. Chem. 2007, 119, 7890–7911; b) W. D.
Jones, Acc. Chem. Res. 2003, 36, 140–146.
[10] a) F. Pape, N. O. Thiel, J. F. Teichert, Chem. Eur. J. 2015, 21, 15934–
15938; b) N. O. Thiel, J. F. Teichert, Org. Biomol. Chem. 2016, 14,
10660–10666; c) F. Pape, J. F. Teichert, Synthesis 2017, 49, 2470–
2482; d) N. O. Thiel, S. Kemper, J. F. Teichert, Tetrahedron 2017, 73,
5023–5028. For related works, see: e) K. Semba, R. Kameyama, Y.
Nakao, Synlett 2015, 26, 318–322; f) T. Wakamatsu, K. Nagao, H.
Ohmiya, M. Sawamura, Organometallics 2016, 35, 1354–1357.
[11] The reactivity of copper hydride complexes bearing phosphine ligands
towards alkenes is well documented. For a review, see: a) J. Mohr, M.
Oestreich, Angew. Chem. Int. Ed. 2016, 55, 12148–12149; Angew.
Chem. 2016, 128, 12330–12332. Selected examples: b) Y. Miki, K.
Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 2013, 52, 10830–
10834; Angew. Chem. 2013, 125, 11030–11034; c) S. Zhu, N.
Niljianskul, S. L. Buchwald, J. Am. Chem. Soc. 2013, 135, 15746–
15749; d) Y. Miki, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2014, 16,
1498–1501; e) J. S. Bandar, E. Ascic, S. L. Buchwald, J. Am. Chem.
Soc. 2016, 138, 5821–5824; f) S.-L. Shi, Z. L. Wong, S. L. Buchwald,
Nature 2016, 532, 353–356; g) Y. Yang, I. B. Perry, G. Lu, P. Liu, S. L.
Buchwald, Science 2016, 353, 144–150.
[21] J. S. Dickschat, Eur. J. Org. Chem. 2017, 4872–4882.
[22] Further evidence for a kinetic isotope effect was obtained by employing
H2/D2 mixtures, see the Supporting Information for details.
[23] Compounds 7a and 7c were isolated with minor D incorporation at the
α carbon (9% and 5% D, respectively), presumably arising from a
directing effect of the aryl groups. However, even though this data
supports the notion that at least a partial reaction between the terminal
alkene and a putative copper(I) hydride intermediate takes place, no
alkene hydrogenation product was observed.
[24] The corresponding
E isomer of 6d gave 7d with the inverse
regioselectivity of /α = 36:64 in 45% yield. This results demonstrates
that also for the higher substitued allylic chlorides, the double bond
geometry has
a profound impact on the regioselectivity of the
monodeuteration.
[25] For selected examples, see: a) J. J. van Veldhuizen, J. E. Campbell, R.
E. Giudici, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 6877–6882;
b) D. Grassi, A. Alexakis, Angew. Chem. Int. Ed. 2013, 52, 13642–
13646; Angew. Chem. 2013, 125, 13887–13891; c) ref. [12a]
[26] Preparation of 9l: P. Huy, S. Motsch, S. M. Kappler, Angew. Chem. Int.
Ed. 2016, 55, 10145–10149; Angew. Chem. 2015, 128, 10300–10304.
[27] For a review on tethered NHC ligands, see: F. Pape, J. F. Teichert, Eur.
J. Org. Chem. 2017, 29, 4206–4229.
[12] It should be noted that the allylic displacement with hydride
nucleophiles not generated from H2 and therefore not addressing
competitive catalytic hydrogenation of alkenes has been studied. a) For
an example employing aluminum hydrides, see: K. D. Reichl, N. L.
Dunn, N. J. Fastuca, A. T. Radosevic, J. Am. Chem. Soc. 2015, 137,
5292–5295; for examples employing hydrosilanes, see: b) T. N. T.
Nguyen, N. O. Thiel, J. F. Teichert, Chem. Commun. 2017, 11686–
11689; c) T. N. T. Nguyen, N. O. Thiel, F. Pape, J. F. Teichert, Org. Lett.
2016, 18, 2455–2458; d) For a review about Pd-catalyzed hydride
transfer from hydrosilanes, see: T. Tsuji, T. Mandai, Synthesis 1996, 1–
24; e) For non-catalytic allylic transpositions using sulfonyl hydrazines,
see: A. G. Myers, B. Zheng, Tetrahedron Lett. 1996, 37, 4841–4844.
This method has been employed in a number of total syntheses of
biologically active compounds, see for example: f) M. G. Charest, C. D.
Lerner, J. D. Brubaker, D. R. Siegel, A. G. Myers, Science 2005, 308,
395–398. For catalytic variants of this method, see for example: g) M.
Movassaghi, O. K. Ahmad, Angew. Chem. Int. Ed. 2008, 47, 8909–
8912; Angew. Chem. 2008, 120, 9041–9044; h) R. J. Lundgren, B. N.
Thomas, Chem. Commun. 2016, 52, 958–961.
[28] After the allylic reduction step, the products of both alkyne
semihydrogenation (Z-dideuterostilbene) and the allylic reduction (10c)
were observed in ~10% conversion (GC analysis).
[29] For reviews, see: a) L. A. Schwartz, M. J. Krische, Isr. J. Chem. 2018,
58, 45–51; b) H.-Y. Jang, M. J. Krische, Acc. Chem. Res. 2004, 37,
653–661.
[30] For the related copper hydride mediated hydroallylations of vinylarenes
and alkynes, see: a) Y.-M. Wang, S. L. Buchwald, J. Am. Chem. Soc.
2016, 138, 5024–5027; b) G. Xu, H. Zhao, B. Fu, A. Cang, G. Zhang, Q.
Zhang, T. Xiong, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 13130–
13134; Angew. Chem. 2017, 129, 13310–13314.
[13] See the Supporting Information for details.
[14] The corresponding allylic acetates, phosphates and carbonates gave
only poor conversion or decomposition, see the Supporting Information
for details.
[15] Crystal structure analysis data of 1: CCDC 1811528.
This article is protected by copyright. All rights reserved.