Page 5 of 7
Journal of the American Chemical Society
Vinylation of Functionalized Aryl Halides with Vinyl Acetates. Eur. J.
vinyl−O and acetyl−O bonds. For details, see Supplementary Scheme
S1.
Org. Chem. 2005, 989. (b) Correa, A.; Martin, R. Ni-Catalyzed Direct
Reductive Amidation via C–O Bond Cleavage. J. Am. Chem. Soc. 2014,
136, 7253. (c) Correa, A.; León, T.; Martin, R. Ni-Catalyzed
Carboxylation of C(sp2)– and C(sp3)–O Bonds with CO2. J. Am. Chem.
Soc. 2014, 136, 1062. (d) Tollefson, E. J.; Erickson, L. W.; Jarvo, E. R.
Stereospecific Intramolecular Reductive Cross-Electrophile Coupling
Reactions for Cyclopropane Synthesis. J. Am. Chem. Soc. 2015, 137,
9760. (e) Konev, M. O.; Hanna, L. E.; Jarvo, E. R. Intra‐ and
Intermolecular Nickel‐Catalyzed Reductive Cross‐Electrophile
Coupling Reactions of Benzylic Esters with Aryl Halides. Angew.
Chem. Int. Ed. 2016, 55, 6730. (f) Cao, Z.-C.; Shi, Z.-J. Deoxygenation
of Ethers To Form Carbon–Carbon Bonds via Nickel Catalysis. J. Am.
Chem. Soc. 2017, 139, 6546. (g) Vara, B. A.; Patel, N. R.; Molander, G.
A. O-Benzyl Xanthate Esters under Ni/Photoredox Dual Catalysis:
Selective Radical Generation and Csp3–Csp2 Cross-Coupling. ACS
Catal. 2017, 7, 3955. (h) Yan, X.-B., Li, C.-L., Jin, W.-J., Guo, P., Shu,
X.-Z. Reductive Coupling of Benzyl Oxalates with Highly
Functionalized Alkyl Bromides by Nickel Catalysis. Chem. Sci. 2018,
9, 4529. (i) Jia, X.-G.; Guo, P.; Duan, J.-C.; Shu, X.-Z. Dual Nickel and
Lewis Acid Catalysis for Cross-electrophile Coupling: the Allylation
of Aryl Halides with Allylic Alcohols. Chem. Sci. 2018, 9, 640.
Reaction via C−N cleavage, see: (j) Moragas, T.; Gaydou, M.; Martin,
R. Nickel‐Catalyzed Carboxylation of Benzylic C−N Bonds with CO2.
Angew. Chem. Int. Ed. 2016, 55, 5053. (k) Liao, L.-L.; Cao, G.-M.; Ye,
J.-H.; Sun, G.-Q.; Zhou, W.-J.; Gui, Y.-Y.; Yan, S.-S.; Shen, G.; Yu, D.-
G. Visible-Light-Driven External-Reductant-Free Cross-Electrophile
Couplings of Tetraalkyl Ammonium Salts. J. Am. Chem. Soc. 2018,
140, 17338.
(6) Selected references: (a) Matsuura, Y.; Tamura, M.; Kochi, T.;
Sato, M.; Chatani, N.; Kakiuchi, F. The Ru(cod)(cot)-Catalyzed
Alkenylation of Aromatic C−H Bonds with Alkenyl Acetates. J. Am.
Chem. Soc. 2007, 129, 9858. (b) Yu, J.-Y.; Kuwano, R. Rhodium‐
Catalyzed Cross‐Coupling of Organoboron Compounds with Vinyl
Acetate. Angew. Chem. Int. Ed. 2009, 48, 7217. (c) Sun, C.-L.; Wang,
Y.; Zhou, X.; Wu, Z.-H.; Li, B.-J.; Guan, B.-T.; Shi, Z.-J. Construction
of Polysubstituted Olefins through Ni‐Catalyzed Direct Activation of
Alkenyl C-O of Substituted Alkenyl Acetates. Chem. Eur. J. 2010, 16,
5844. (d) Moselage, M.; Sauermann, N.; Richter, S. C.; Ackermann, L.
C-H Alkenylations with Alkenyl Acetates, Phosphates, Carbonates,
and Carbamates by Cobalt Catalysis at 23°C. Angew. Chem. Int. Ed.
2015, 54, 6352. (e) Otley, K. D.; Ellman, J. A. An Efficient Method for
the Preparation of Styrene Derivatives via Rh(III)-Catalyzed Direct
C–H Vinylation. Org. Lett. 2015, 17, 1332. (f) Li, J.; Knochel, P. Cobalt‐
Catalyzed Cross‐Couplings between Alkenyl Acetates and Aryl or
Alkenyl Zinc Pivalates. Angew. Chem. Int. Ed. 2018, 57, 11436.
1
2
3
4
5
6
7
8
(10) (a) Krasovskaya, V.; Krasovskiy, A.; Bhattacharjya, A.;
Lipshutz, B. H. “On water” sp3 – sp2 cross-couplings between
benzylic and alkenyl halides. Chem. Commun., 2011, 47, 5717. (b)
Cherney, A. H.; Reisman, S. E. Nickel-Catalyzed Asymmetric
Reductive Cross-Coupling Between Vinyl and Benzyl Electrophiles. J.
D. J. Cross‐Electrophile Coupling of Vinyl Halides with Alkyl Halides.
Chem. Eur. J. 2016, 22, 7399. (d) Cai, Y.; Benischke, A. D.; Knochel, P.;
Gosmini, C. Cobalt-Catalyzed Reductive Cross-Coupling Between
Styryl and Benzyl Halides. Chem. Eur. J. 2017, 23, 250.
9
(11) Guan, W.; Liao, J.; Watson, M. P. Vinylation of Benzylic
Amines via C–N Bond Functionalization of Benzylic Pyridinium Salts.
Synthesis 2018, 50, 3231.
(12) Ackerman, L. K. G.; Anka-Lufford, L. L.; Naodovic, M.; Weix,
D. J. Cobalt co-catalysis for cross-electrophile coupling:
diarylmethanes from benzyl mesylates and aryl halides. Chem. Sci.,
2015, 6, 1115.
(13) Ye, Y.; Chen, H.; Sessler, J. L.; Gong, H. Zn-Mediated
Fragmentation of Tertiary Alkyl Oxalates Enabling Formation of
Alkylated and Arylated Quaternary Carbon Centers. J. Am. Chem.
Soc. 2019, 141, 820.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(14) Selected reviews: (a) Trost, B. M. Asymmetric Transition
Metal-Catalyzed Allylic Alkylations. Chem. Rev. 1996, 96, 395. (b)
Pigge, F. C. Metal-Catalyzed Allylation of Organoboranes and
Organoboronic Acids. Synthesis 2010, 11, 1745. Selected recent
examples on reductive coupling between allyl and aryl electrophiles,
see: (c) M. Durandetti, J.-Y. Nedelec, J. Périchon, Nickel-Catalyzed
Direct Electrochemical Cross-Coupling between Aryl Halides and
Activated Alkyl Halides. J. Org. Chem. 1996, 61, 1748; (d) P. Gomes, C.
Gosmini, J. Périchon, New Chemical Cross-Coupling between Aryl
Halides and Allylic Acetates Using a Cobalt Catalyst. Org. Lett. 2003,
5, 1043; (e) S. Wang, Q. Qian, H. Gong, Nickel-Catalyzed Reductive
Coupling of Aryl Halides with Secondary Alkyl Bromides and Allylic
Acetate. Org. Lett. 2012, 14, 3352; (f) L. L. Anka-Lufford, M. R. Prinsell,
D. J. Weix, Selective Cross-Coupling of Organic Halides with Allylic
Acetates. J. Org. Chem. 2012, 77, 9989.
(15) Selected examples: (a) Blakey, S. B.; MacMillan, D. W. C. The
First Suzuki Cross-Couplings of Aryltrimethylammonium Salts. J. Am.
Chem. Soc. 2003, 125, 6046. (b) Xie, L.-G.; Wang, Z.-X. Nickel‐
Catalyzed Cross‐Coupling of Aryltrimethylammonium Iodides with
Organozinc Reagents. Angew. Chem. Int. Ed. 2011, 50, 4901. (c) Wang,
D.-Y.; Kawahata, M.; Yang, Z.-K.; Miyamoto, K.; Komagawa, S.;
Yamaguchi, K.; Wang, C.; Uchiyama, M. Stille coupling via C–N bond
cleavage. Nat. Commun. 2016, 7, 12937.
(16) A review for application, see: (a) Mondal, S.; Panda, G.
Synthetic methodologies of achiral diarylmethanols, diaryl and
triarylmethanes (TRAMs) and medicinal properties of diaryl and
triarylmethanes-an overview. RSC Adv., 2014, 4, 28317. A review for
diarylmethane synthesis, see: (b) Houwer, J. D.; Maes, B. U. W.
Synthesis of Aryl(di)azinylmethanes and Bis(di)azinylmethanes via
TransitionMetal-Catalyzed Cross-Coupling Reactions. Synthesis 2014,
46, 2533. Selected references for synthesis, see: (c) Cao, Z.-C.; Yu, D.-
G.; Zhu, R.-Y.; Wei, J.-B.; Shi, Z.-J. Direct cross-coupling of benzyl
alcohols to construct diarylmethanes via palladium catalysis. Chem.
Commun., 2015, 51, 2683. (d) Suga, T; Ukaji, Y. Nickel-Catalyzed
Cross-Electrophile Coupling between Benzyl Alcohols and Aryl
Halides Assisted by Titanium Co-reductant. Org. Lett. 2018, 20, 7846.
(e) Liao, J.; Guan, W.; Boscoe, B. P.; Tucker, J. W.; Tomlin, J. W.;
Garnsey, M. R.; Watson, M. P. Transforming Benzylic Amines into
Diarylmethanes: Cross-Couplings of Benzylic Pyridinium Salts via C−
N Bond Activation. Org. Lett. 2018, 20, 3030. Also see ref.12.
(17) For conventional approaches to Grisan, see: (a) Antus, S.;
Baits-Gács, E.; Snatzke, G.; Vas, J. Synthesis of Grisan. Tetrahedron,
1986, 42, 5637. (b) Kaufman, T. S.; Sindelar, R. D. A short and
efficient synthesis of grisan. J. Heterocyclic Chem., 1989, 26, 879.
(18) For the discovery and synthesis of AC-7954, see: Croston, G.
E.; Olsson, R.; Currier, E. A.; Burstein, E. S.; Weiner, D.; Nash, N.;
Severance, D.; Allenmark, S. G.; Thunberg, L.; Ma, J.-N.; Mohell, N.;
O’Dowd, B.; Brann, M. R.; Hacksell, U. Discovery of the First
(7) (a) Gärtner, D.; Stein, A. L.; Grupe, S.; Arp, J.; Jacobi von
Wangelin, A. Iron-Catalyzed Cross-Coupling of Alkenyl Acetates.
Angew. Chem. Int. Ed. 2015, 54, 10545. (b) Li, B.-J.; Xu, L.; Wu, Z.-H.;
Guan, B.-T.; Sun, C.-L.; Wang, B.-Q.; Shi, Z.-J. Cross-Coupling of
Alkenyl/Aryl Carboxylates with Grignard Reagent via Fe-Catalyzed
C−O Bond Activation. J. Am. Chem. Soc. 2009, 131, 14656.
(8) Ammonium salts are readily available from amines, and are
stable to long-term storage. For selected reactions using benzyl
ammoniums, see: (a) de la Herrán, G.; Segura, A.; Csák,ÿ A. G.
Benzylic Substitution of Gramines with Boronic Acids and Rhodium
or Iridium Catalysts. Org. Lett. 2007, 9, 961. (b) Maity, P.; Shacklady-
McAtee, D. M.; Yap, G. P. A.; Sirianni, E. R.; Watson, M. P. Nickel-
Catalyzed Cross Couplings of Benzylic Ammonium Salts and Boronic
Acids: Stereospecific Formation of Diarylethanes via C-N Bond
Activation. J. Am. Chem. Soc. 2013, 135, 280. (c) Zhang, H.; Hagihara,
S.; Itami, K. Making Dimethylamino a Transformable Directing
Group by Nickel‐Catalyzed C-N Borylation. Chem. Eur. J. 2015, 21,
16796. (d) Hu, J.; Sun, H.; Cai, W.; Pu, X.; Zhang, Y.; Shi, Z. Nickel-
Catalyzed Borylation of Aryl- and Benzyltrimethylammonium Salts
via C–N Bond Cleavage. J. Org. Chem. 2016, 81, 14. (e) Türtscher, P.
L.; Davis, H. J.; Phipps, R. J. Palladium-Catalysed Cross-Coupling of
Benzylammonium Salts with Boronic Acids under Mild Conditions.
Synthesis 2018, 50, 793.
(9) Our initial studies revealed that at least 7 types of products
were observed, which were formed via cleavage of Bn−N, Me−N,
ACS Paragon Plus Environment