1
440
G. Wang et al. / Tetrahedron Letters 50 (2009) 1438–1440
7
8
9
.
.
.
Navath, R. S.; Pabbisetty, K. B.; Hu, L. Tetrahedron Lett. 2006, 47, 389.
Kuttan, A.; Nowshudin, S.; Rao, M. N. A. Tetrahedron Lett. 2004, 45, 2663.
Hernandez, J. N.; Crisostomo, F. R. P.; Martin, T.; Martin, V. S. Eur. J. Org. Chem.
14. All the N-Boc-amines were synthesized according our previous methods. See:
Jia, X.; Huang, Q.; Li, J.; Li, S.; Yang, Q. Synlett 2007, 806.
15. (a) Siskin, M. Naturwissenschaftliche Rundschau 1992, 7, 283; (b) Krammer, P.;
Vogel, H. J. Supercrit. Fluids 2000, 16, 189.
16. (a) Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. J. Am. Chem. Soc.
2000, 122, 1908; (b) Chandler, K.; Deng, F.; Dillow, A. K.; Liotta, C. L.; Eckert, C.
A. Ind. Eng. Chem. Res. 1997, 36, 5175.
17. N-Boc-amine(1 mmol) and distilled, deionized water (1 mL) were loaded into a
15 mL Teflon-lined stainless bomb, which was sealed and heated at 150 °C
under hydrothermal condition for 2–16 h. Then the reaction mixture was
cooled to room temperature. EtOAc (3 mL) was added and the mixture was
stirred. The organic layer was separated, washed with water, and dried over
2
007, 30, 5050.
0. Other Lewis acids. Sn(OTf)
Synth. Commun. 2003, 33, 445; Clay: (b) Shaikh, N. S.; Bhor, S. S.; Gajare, A. S.;
Deshpande, V. H.; Wakharkar, R. D. Tetrahedron Lett. 2004, 45, 5395; SnCl
c) Frank, R.; Schutkowski, M. Chem. Commun. 1996, 2509; BF : (d)
ÁOEt
Evans, E. F.; Lewis, N. J.; Kapfer, I.; Macdonald, G.; Taylor, R. J. K. Synth.
Commun. 1997, 27, 1819; CeCl –NaI: (e) Marcantoni, E.; Massaccesi, M.;
Torregiani, E.; Bartoli, G.; Bosco, M.; Sambri, L. J. Org. Chem. 2001, 66, 4430;
Yb(OTf) : (f) Kotsuki, H.; Ohishi, T.; Araki, T.; Arimura, K. Tetrahedron Lett.
998, 39, 4869.
1. Na CO : (a) El Kazzouli, S.; Koubachi, J.; Berteina-Raboin, S.; Mouaddib, A.;
1
2
: (a) Bose, D. S.; Kumar, K. K.; Reddy, A. V. N.
4
:
(
3
2
3
3
1
2 4
anhydrous Na SO . The solvent was removed in vacuo and the residue was
1
2
3
purified by silica gel column chromatography to give corresponding amine.
Because amino acids were water-soluble and did not dissolve in common
organic solvents, the above purification strategy did not work when N-Boc
Guillaumet, G. Tetrahedron Lett. 2006, 47, 8575; t-BuONa: (b) Tom, N. J.; Simon,
W. M.; Frost, H. N.; Ewing, M. Tetrahedron Lett. 2004, 45, 905; NaOMe: (c)
Ravinder, K.; Reddy, A. V.; Mahesh, K. C.; Narasimhulu, M.; Venkateswarlu, Y.
Synth. Commun. 2007, 37, 281; DABCO: (d) Zorn, C.; Gnad, F.; Salmen, S.;
Herpin, T.; Reiser, O. Tetrahedron Lett. 2001, 42, 7049.
amino acid derivatives were the substrates. For
L-alanine, after the reaction
mixture was evaporated, the product was of sufficient purity (spectral data)
and did not require further efforts of purification. For
product was purified by recrystallization in EtOH/H
L
-phenylalanine, the
1
1
2. (a) Katritzky, A. R.; Allin, S. M.; Siskin, M. Acc. Chem. Res. 1996, 29, 399;
2
O. In addition, 4-
(
b) Savage, P. E. Chem. Rev. 1999, 99, 603; (c) Watanabe, M.; Sato, T.;
Inomata, H.; Smith, R. L., Jr.; Arai, K.; Kruse, A.; Dinjus, E. Chem. Rev. 2004,
04, 5803; (d) Fraga-Dubreuil, J.; Poliakoff, M. Pure Appl. Chem. 2006, 78,
971.
aminophenol was purified directly by drying in vacuo to afford pure product.
All the products are known and were characterized by comparison of their
spectral data with those of authentic samples.
1
1
Selected data of
L
-phenylalanine: IR (KBr): 3446, 3066, 3032, 2967, 1621, 1585,
À1
1
3. (a) Herreras, C. I.; Yao, X.; Li, Z.; Li, C.-J. Chem. Rev. 2007, 107, 2546; (b) Akiya,
N.; Savage, P. E. Chem. Rev. 2002, 102, 2725; (c) Lindstrom, U. M. Chem. Rev.
1501 cm
.
H NMR (500 MHz, D O): d = 7.40–7.28 (m, 5H), 3.96–3.94 (m, 1H),
2
13
3.27–3.06 (m, 2H). C NMR (125 MHz, D
129.06, 127.64, 55.98, 36.29.
2
O): d = 173.89, 135.02, 129.30,
2
002, 102, 2751.