F. Rao et al. / Biochemical and Biophysical Research Communications 398 (2010) 500–505
505
0
0
0
2
.1.4.16) could be attributed to non-specific activity of some
[13] M. Proudfoot, E. Kuznetsova, S.A. Sanders, C.F. Gonzalez, G. Brown, A.M.
Edwards, C.H. Arrowsmith, A.F. Yakunin, High throughput screening of purified
proteins for enzymatic activity, Methods Mol. Biol. 426 (2008) 331–341.
[
14] D.J. Miller, L. Shuvalova, E. Evdokimova, A. Savchenko, A.F. Yakunin, W.F.
Anderson, Structural and biochemical characterization of a novel Mn2+-
dependent phosphodiesterase encoded by the yfcE gene, Protein Sci. 16 (2007)
PDE(s). The real functions of these proteins remain to be eluci-
dated. Another implication of our results is that the scarcity of re-
ports of 2 ,3 -cyclic mononucleotides isolation from biological
systems may be due to their susceptibility to hydrolysis by non-
specific PDEs. Treatment with divalent metal chelating agents in-
stead of a specific class of PDE inhibitor will facilitate the isolation
process. Finally, we suggest the use of 2 ,3 -AMP as a tool to char-
acterize PDE and other phosphohydrolyase, the advantages of
which, in comparison to the widely used bis-pNPP, is discussed
in Supplementary material.
1338–1348.
0
0
[
[
[
15] F. Rao, R.Y. See, D. Zhang, D.C. Toh, Q. Ji, Z.X. Liang, YybT is a signaling protein
that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF
domain with ATPase activity, J. Biol. Chem. 285 (2010) 473–482.
16] F. Rao, S. Pasunooti, Y. Ng, W. Zhuo, L. Lim, W. Liu, Z.-X. Liang, Enzymatic
synthesis of c-di-GMP using
Biochem. 389 (2009) 138–142.
a thermophilic diguanylate cyclase, Anal.
0
0
17] L. Aravind, E.V. Koonin, A novel family of predicted phosphoesterases includes
Drosophila prune protein and bacterial RecJ exonuclease, Trends Biochem. Sci.
23 (1998) 17–19.
[18] U. Mechold, G. Fang, S. Ngo, V. Ogryzko, A. Danchin, YtqI from Bacillus subtilis
has both oligoribonuclease and pAp-phosphatase activity, Nucleic Acids Res.
3
5 (2007) 4552–4561.
Acknowledgments
[
[
19] F. Rao, Y. Qi, H.S. Chong, M. Kotada, B. Li, J. Lescar, K. Tang, Z.-X. Liang, The
functional role of a conserved loop in EAL domain-based c-di-GMP specific
phosphodiesterase, J. Bacteriol. 191 (2009) 4722–4731.
This work is supported by Singapore Biomedical Research
Council (Grant 06/1/22/19/464). We thank Prof. Zhao-Xun Liang
for his encouragement, discussion, and support; and I. Soehano
for her experimental assistance.
20] F. Rao, Y. Yang, Y. Qi, Z.X. Liang, Catalytic mechanism of c-di-GMP specific
phosphodiesterase:
Pseudomonas aeruginosa, J. Bacteriol. 190 (2008) 3622–3631.
[21] L. Aravind, E.V. Koonin, The HD domain defines a new superfamily of metal-
dependent phosphohydrolases, Trends Biochem. Sci. 23 (1998) 469–472.
a study of the EAL domain-containing RocR from
[
22] E. Murugan, R. Kong, H. Sun, F. Rao, Z.X. Liang, Expression, purification and
characterization of the acyl carrier protein phosphodiesterase from
Pseudomonas aeruginosa, Protein Expr. Purif. 71 (2010) 132–138.
Appendix A. Supplementary data
[
23] I.P. Fabrichniy, L. Lehtio, M. Tammenkoski, A.B. Zyryanov, E. Oksanen, A.A.
Baykov, R. Lahti, A. Goldman, A trimetal site and substrate distortion in a
family II inorganic pyrophosphatase, J. Biol. Chem. 282 (2007) 1422–1431.
24] T.R.M. Barends et al., Structure and mechanism of a bacterial light-regulated
cyclic nucleotide phosphodiesterase, Nature 459 (2009) 1015–1018.
[
[
References
25] T. Hogg, U. Mechold, H. Malke, M. Cashel, R. Hilgenfeld, Conformational
antagonism between opposing active sites in
homolog modulates (p)ppGpp metabolism during the stringent response
corrected], Cell 117 (2004) 57–68.
a bifunctional RelA/SpoT
[
1] C.M. Cuchillo, X. Pares, A. Guasch, T. Barman, F. Travers, M.V. Nogues, The role
0
0
of 2 ,3 -cyclic phosphodiesters in the bovine pancreatic ribonuclease
catalysed cleavage of RNA: intermediates or products?, FEBS Lett 333 (1993)
07–210.
2] J. Ren, Z. Mi, N.A. Stewart, E.K. Jackson, Identification and quantification of
A
[
[
[
[
26] A.T. Bender, J.A. Beavo, Cyclic nucleotide phosphodiesterases: molecular
regulation to clinical use, Pharmacol. Rev. 58 (2006) 488–520.
27] G. Costanzo, S. Pino, F. Ciciriello, E. Di Mauro, Generation of long RNA chains in
water, J. Biol. Chem. 284 (2009) 33206–33216.
2
[
[
[
[
0
0
2
,3 -cAMP release by the kidney, J. Pharmacol. Exp. Ther. 328 (2009) 855–865.
0
0
3] E.K. Jackson, J. Ren, Z. Mi, Extracellular 2 ,3 -cAMP is a source of adenosine, J.
Biol. Chem. 284 (2009) 33097–33106.
28] K. Sieroslawski, K. Slepokura, T. Lis, M. Bogucka, J. Lutomska, A. Kraszewski,
0
0
Different nucleobase orientations in two cyclic 2 ,3 -phosphates of purine
0
0
4] G.I. Drummond, N.T. Iyer, J. Keith, Hydrolysis of ribonucleoside 2 ,3 -cyclic
phosphates by a diesterase from brain, J. Biol. Chem. 237 (1962) 3535–3539.
0
0
0
0
ribonucleosides: Et3NH(2 ,3 -cAMP) and Et3NH(2 ,3 -cGMP)ꢂH2O, Acta
Crystallogr. C 62 (2006) o405–o409.
0
0
5] B. Schwer, A. Aronova, A. Ramirez, P. Braun, S. Shuman, Mammalian 2 ,3 cyclic
nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme
in vivo, RNA 14 (2008) 204–210.
[
[
29] B.S. Reddy, W. Saenger, Molecular and crystal structure of the free acid of
0
0
cytidine 2 ,3 -cyclophosphate, Acta Crystallogr. B 34 (1978) 1520–1524.
30] I. Zegers, R. Loris, G. Dehollander, A. Fattah Haikal, F. Poortmans, J. Steyaert, L.
Wyns, Hydrolysis of a slow cyclic thiophosphate substrate of RNase T1
analyzed by time-resolved crystallography, Nat. Struct. Biol. 5 (1998) 280–283.
31] A. Hofmann, M. Grella, I. Botos, W. Filipowicz, A. Wlodawer, Crystal structures
of the semireduced and inhibitor-bound forms of cyclic nucleotide
phosphodiesterase from Arabidopsis thaliana, J. Biol. Chem. 277 (2002) 1419–
[
6] D.H. Shin, M. Proudfoot, H.J. Lim, I.K. Choi, H. Yokota, A.F. Yakunin, R. Kim, S.H.
Kim, Structural and enzymatic characterization of DR1281: a calcineurin-like
phosphoesterase from Deinococcus radiodurans, Proteins 70 (2008) 1000–1009.
7] K. Podzelinska, S.M. He, M. Wathier, A. Yakunin, M. Proudfoot, B. Hove-Jensen,
D.L. Zechel, Z. Jia, Structure of PhnP, a phosphodiesterase of the carbon–
phosphorus lyase pathway for phosphonate degradation, J. Biol. Chem. 284
[
[
1425.
(
2009) 17216–17226.
[
[
32] L. Aravind, An evolutionary classification of the metallo-beta-lactamase fold
proteins, In Silico Biol. 1 (1999) 69–91.
33] N. Keppetipola, J. Nandakumar, S. Shuman, Reprogramming the tRNA-splicing
activity of a bacterial RNA repair enzyme, Nucleic Acids Res. 35 (2007) 3624–
[
8] M. Nagata, C. Kaito, K. Sekimizu, Phosphodiesterase activity of CvfA is required
for virulence in Staphylococcus aureus, J. Biol. Chem. 283 (2008) 2176–2184.
[
9] N. Keppetipola, S. Shuman,
metallophosphodiesterase enzymes is
nucleotide phosphodiesterase activity, J. Biol. Chem. 283 (2008) 30942–30949.
A phosphate-binding histidine of binuclear
0 0
determinant of 2 ,3 -cyclic
a
3
630.
0
0
[
[
[
34] N. Keppetipola, S. Shuman, Characterization of the 2 ,3
cyclic
[
[
10] R. Mazumder, L.M. Iyer, S. Vasudevan, L. Aravind, Detection of novel members,
structure–function analysis and evolutionary classification of the 2H
phosphoesterase superfamily, Nucleic Acids Res. 30 (2002) 5229–5243.
11] F.J. Marsh, P. Weiner, J.E. Douglas, P.A. Kollman, G.L. Kenyon, J.A. Gerlt,
Theoretical calculations of hydrolysis energies of ‘‘high-energy” molecules. 3.
phosphodiesterase activities of Clostridium thermocellum polynucleotide
kinase-phosphatase and bacteriophage lambda phosphatase, Nucleic Acids
Res. 35 (2007) 7721–7732.
35] A.F. Yakunin, M. Proudfoot, E. Kuznetsova, A. Savchenko, G. Brown, C.H.
Arrowsmith, A.M. Edwards, The HD domain of the Escherichia coli tRNA
0
0
0
0
Theoretical calculations on the geometric destabilization of 3 ,5 - and 2 ,3 -
cyclic nucleotides, J. Am. Chem. Soc. 102 (1980) 1660–1665.
0
0
0
nucleotidyltransferase has 2 ,3 -cyclic phosphodiesterase, 2 -nucleotidase, and
phosphatase activities, J. Biol. Chem. 279 (2004) 36819–36827.
0
0
[
12] M. Wall, B. Linkletter, D. Williams, R.C. Hynes, J. Chin, Rapid hydrolysis of 2 ,3 -
cAMP with a Cu(II) complex: effect of intramolecular hydrogen bonding on the
basicity and reactivity of a metal-bound hydroxide, J. Am. Chem. Soc. 121
36] Y. Sakamoto, N. Tanaka, T. Ichimiya, T. Kurihara, K.T. Nakamura, Crystal
0
0
0
structure of the catalytic fragment of human brain 2 ,3 -cyclic-nucleotide 3 -
phosphodiesterase, J. Mol. Biol. 346 (2005) 789–800.
(
1999) 4710–4711.