4
842
N. Nowrouzi et al. / Tetrahedron Letters 53 (2012) 4841–4842
Table 1
Supplementary data
Nitration of aromatic compounds using NBS/AgNO
3
in refluxing CH
3
CN
Yielda (%)
Entry
1
Aromatic compound
Time
3 h
126. These data include MOL files and InChiKeys of the most
important compounds described in this article.
N,N-Dimethylaniline
ortho: 16
para: 69
ortho: 15
para: 74
ortho: 20
para: 66
2-Nitro: 88
3-Nitro: 91
3-Nitro: 87
1-Nitro: 80
ortho: 20
para: 67
2-Nitro: 81
2-Nitro: 92
2-Nitro: 76
4-Nitro: 75
—
2
3
Anisole
Toluene
3.5 h
4.5 h
References and notes
4
5
6
7
8
4-Iodoanisole
Indole
2-Methylindole
Naphthalene
Phenol
5 h
2 h
1.5 h
3.5 h
2.5 h
1.
(a) Malysheva, L. V.; Paukshits, E. A.; Ione, K. G. Catal. Rev. Sci. Eng. 1995, 37,
79; (b) Bertea, L. E.; Kouwenhoven, H. E.; Prins, R. Appl. Catal. A 1995, 129, 229;
c) Smith, K. Bull. Soc. Chim. Fr. 1989, 272; (d) Wright, O. L.; Teipel, J.; Thoennes,
D. J. Org. Chem. 1965, 30, 1301; (e) Laszlo, P.; Vandormeal, J. Chem. Lett. 1843,
988; (f) Choudary, B. M.; Sarma, M. R.; Vijayakumar, K. J. Mol. Catal. 1994, 87,
3; (g) Riego, J. M.; Sedin, Z.; Zaldivar, J. M.; Marziano, N. C.; Torato, C.
Tetrahedron Lett. 1996, 37, 513; (h) Suzuki, E.; Tohmori, K.; One, Y. Chem. Lett.
987, 2273; (i) Min, S.; Shi-Cong, C. J. Fluorine Chem. 2002, 113, 207; (j)
1
(
1
3
9
4-Bromophenol
4-Methoxyphenol
4-Nitrophenol
2-Nitrophenol
Cyanobenzene
Chlorobenzene
Bromobenzene
Iodobenzene
4 h
50 min
7 h
7.5 h
24 h
24 h
24 h
24 h
1
1
1
1
1
1
1
0
1
2
3
4
5
6
1
Esakkidurai, T.; Pitchumani, K. J. Mol. Cat. A: Chem. 2002, 185, 305; (k)
Kogelbauer, A.; Vassena, D.; Prins, R.; Armor, J. N. Catal. Today 2000, 55, 151; (l)
Dagade, S. P.; Waghmode, S. B.; Kadam, V. S.; Dongare, M. K. Appl. Catal. A 2002,
226, 49; (m) Peng, X.; Suzuki, H.; Lu, C. Tetrahedron Lett. 2001, 42, 4357;
Zolfigol, M. R.; Mirjalili, B. F.; Bamoniri, A.; Karimi Zarchi, M. A.; Zarei, A.;
Bamoniri, A.; Khazdooz, L.; Noei, J. Bull. Korean Chem. Soc. 2004, 25, 1414; (o)
Shokrolahi, A.; Zali, A.; Keshavarz, M. H. Chin. Chem. Lett. 2007, 1064, 18.
—
—
—
a
Isolated yield.
2. (a) Delaude, L.; Laszlo, P.; Smith, K. Acc. Chem. Res. 1993, 26, 607; (b) Laszlo, P.
Acc. Chem. Res. 1986, 19, 121; (c) Cornelis, A.; Laszlo, P.; Pennetreau, P. Bull. Soc.
Chim. Belg. 1984, 93, 961; (d) Zolfigol, M. A.; Iranpoor, N.; Firouzabadi, H. Orient.
J. Chem. 1998, 14, 369; (e) Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A.; Iran, J.
Chem. Chem. Eng. 1997, 16, 48; (f) Firouzabadi, H.; Iranpoor, N.; Zolfigol, M. A.
Synth. Commun. 1997, 27, 3301; (g) Iranpoor, N.; Firouzabadi, H.; Zolfigol, M. A.
Synth. Commun. 1998, 28, 2773; (h) Mellor, J. M.; Mittoo, S.; Parkes, R.; Millar, R.
W. Tetrahedron 2000, 56, 8019.
O
O
O
ArH
AgNO3
AgBr
NBr
O
_
ArNO2
+
NOH
O
NO NO2
-
3.
(a) Rodrigues, J. A. R.; Oliveria Filho, A. P.; Moran, P. J. S.; Custodio, R.
Tetrahedron 1999, 55, 6733; (b) Rodrigues, J. A. R.; Oliveria Filho, A. P.; Moran, P.
J. S. Synth. Commun. 1999, 29, 2169; (c) Ramana, M. M. V.; Malik, S. S.; Parihar, J.
A. Tetrahedron Lett. 2004, 45, 8681.
O
(
I)
Scheme 2.
4. (a) Zolfigol, M. A.; Bagherzadeh, M.; Madrakian, E.; Ghaemi, E.; Taqian-nasab, A.
J. Chem. Res. Synop. 2001, 140; (b) Zolfigol, M. A.; Madrakian, E.; Ghaemi, E.
Indian J. Chem. 2001, 40B, 1191; (c) Hosseini-Sarvari, M.; Tavakolian, M.;
Ashenagar, S. Iran. J. Sci. Technol. Trans. A 2010, 34, 215.
Here, treatment of phenols under similar conditions to those
5.
(a) Parac-Vogt, T. N.; Binnemans, K. Tetrahedron Lett. 2004, 45, 3137; (b)
Hajipour, A. R.; Ruoho, A. E. Tetrahedron Lett. 2005, 46, 8307; (c) Shi, M.; Shi-
Cong, C. J. Fluorine Chem. 2002, 113, 207; (d) Rajanna, K. C.; Kumar, M. S.;
Venkanna, P.; Ramgopal, S.; Venkateswarlu, M. Int. J. Org. Chem. 2011, 1, 250;
described above gave the nitro derivatives in good to excellent
yields. Phenols with electron-donating or electron-withdrawing
groups reacted smoothly under mild conditions, and in all cases,
mononitration was observed. For example, 4-methoxy-2-nitrophe-
nol was isolated in 92% yield following nitration of 4-methoxyphe-
nol for 50 min (Table 1, entry 10).
(
e) Cheng, G.; Duan, X.; Qi, X.; Lu, C. Catal. Commun. 2008, 10, 201; (f) Olah, G.
A.; Narang, S. C.; Olah, J. A.; Pearson, R. L.; Cupas, C. A. J. Am. Chem. Soc. 1980,
02, 3507.
1
6
7
.
.
Nowrouzi, N.; Zareh Jonaghani, M. Tetrahedron Lett. 2011, 52, 5081.
Conlon, D. A.; Lynch, J. E.; Hartner, F. W.; Reamer, R. A.; Volante, R. P. J. Org.
Chem. 1996, 61, 6425.
A possible mechanism for the nitration process is shown in
Scheme 2. Addition of AgNO
3
to N-bromosuccinimide produces
8. (a) Zolfigol, M. A.; Ghaemi, E.; Madrakian, E. Molecules 2001, 6, 614; (b) Sun, H.
B.; Hua, R.; Yin, Y. J. Org. Chem. 2005, 70, 9071; (c) Ganguly, N. C.; Dutta, S.;
Datta, M.; De, P. J. Chem. Res. 2005, 733; (d) Rajagopal, R.; Srinivasan, K. V.
Ultrason. Sonochem. 2003, 10, 41; (e) Baghernejad, B.; Oskooie, H. A.; Heravi, M.
M.; Beheshtiha, Y. S. Chin. J. Chem. 2010, 28, 393; (f) Selvam, J. J. P.; Suresh, V.;
Rajesh, K.; Reddy, S. R.; Venkateswarlu, Y. Tetrahedron Lett. 2006, 47, 2507; (g)
Zolfigol, M. A.; Madrakian, E.; Ghaemi, E. Synlett 2003, 2222.
the intermediate I which is accompanied by the precipitation of
AgBr. This reactive intermediate then reacts with the aromatic ring
of the substrate to produce the corresponding nitro aromatic com-
pound along with N-hydroxysuccinimide. N-hydroxysuccinimide
can be removed from the organic phase by washing with an aque-
ous solution of sodium bicarbonate.
The precipitation of AgBr and formation of N-hydroxy-
succinimide during the reaction are considered strong evidence
for the proposed mechanism. In this reaction, the silver salt is
recovered as AgBr by filtration of the reaction mixture.
In summary, we have described a simple and convenient meth-
od for the nitration of aromatic compounds using NBS/AgNO
reactions occur under mild and environmentally safer conditions
and can be applied to a wide range of acid-sensitive substrates in
comparison to traditional methods. Further, the absence of dinitrat-
ed and polynitrated products is another advantage of our system.
9.
Typical procedure for the nitration of N,N-dimethylaniline: To a stirred mixture of
CH CN (5 mL) and NBS (1.0 mmol, 0.177 g) at reflux, was added AgNO
1.0 mmol, 0.169 g). N,N-Dimethylaniline (1 mmol, 0.126 mL) was then added
to the mixture. After 3 h, the mixture was filtered to remove AgBr. The solvent
was evaporated and the residue dissolved in CH Cl (10 mL) and washed with
aqueous 4% NaHCO
3
3
(
2
2
3
(2 Â 5 mL) to remove N-hydroxysuccinimide from the
organic phase. The aqueous phase was separated and the organic phase dried
and concentrated. The residue was subjected to column chromatography over
silica gel using n-hexane/EtOAc (4:1) as eluent to give 4-nitro- and 2-nitro-N,N-
dimethylaniline in 69% and 16% yields, respectively. 4-Nitro-N,N-
9
3
. The
10
dimethylaniline (Table 1, entry 1): Yellow powder; mp 162–165 °C (Lit 163–
À1
1
165 °C); IR (KBr) 800, 1300, 1350, 1500, 1525, 1600, 2900–3000 cm
; H NMR
(
250 MHz, CDCl ): d (ppm) 2.89 (6H, s), 6.32 (2H, d, J = 5.49 Hz), 7.8 (2H, d,
3
13
J = 5.5 Hz); C NMR (62.9 MHz, CDCl ): d (ppm) 30.2, 110.5, 126.4, 138.0,
3
154.4. The aqueous phase was treated with 4% HCl solution and extracted with
CH Cl (10 mL). The organic layer was separated and evaporated. The melting
2 2
point of the obtained product (colourless crystals) was 93–95 °C, which was in
Acknowledgement
We thank the Persian Gulf University Research Council for
generous partial financial support of this study.