11644 J. Am. Chem. Soc., Vol. 119, No. 48, 1997
DaVies and Distefano
Figure 1. Stereoview of model of ALBP-Phen.
because it suggests that most of the cavity residues are amenable
to substitution. Indeed, a number of mutagenesis studies have
been carried out with ALBP and related fatty acid binding
catalyzes the enantioselective hydrolysis of several unactiVated
amino acid esters; these include methyl, ethyl, and isopropyl
esters of the amino acids alanine, tyrosine, and serine. Enan-
tioselectivities as high as 86% ee and catalysis with as many as
7.6 turnovers in 24 h have been obtained. The hydrolysis of
an aryl amide substrate and an aryl ester are also described.
16
proteins resulting in very little change in the overall structure.
Transition metal complexes catalyze a diverse array of
chemical reactions. The ligand system 1,10-phenanthroline has
been attached to a number of proteins to perform oxidative
chemistry.17 Cupric ions, Cu(II)-phenanthroline, and related
Results
metal-ligand systems have also been shown to promote the
hydrolysis of esters and amides resulting in rate enhancements
Preparation of ALBP-Phen. ALBP-Phen (2) was prepared
by reacting iodoacetamido 1,10-phenanthroline (1) with ALBP
at ambient temperature for 48 h as shown below. The extent
of reaction with Cys117 was quantitated by thiol titration with
Ellman’s reagent under denaturing conditions. Using this
5
6
18-20
1
0 -10 -fold above the background rate.
Based on these
precedents, we decided to investigate the hydrolytic chemistry
catalyzed by copper phenanthroline within the ALBP cavity.
2
1
In the work described here, we have attached a phenanthroline
ligand to a unique cysteine residue present in the interior of
ALBP in order to position a Cu(II) ion within the protein cavity.
The resulting semisynthetic metalloprotein, ALBP-Phen-Cu(II)
(
15) Hodsdon, M. E.; Ponder, J. W.; Cistola, D. P. J. Mol. Biol. 1996,
64, 585-602.
16) (a) Sha, R. S. C. D. K.; Xu, Z.; Banaszak, L. J.; Bernlohr, D. A. J.
Biol. Chem. 1993, 268, 7885-7892. (b) Jiang, N.; Frieden, C. Biochemistry
993, 32, 11015-11021. (c) Frieden, C.; Jiang, N.; Cistola, D. P.
2
(
1
Biochemistry 1995, 34, 2724-2730. (d) Kim, K.; Cistola, D. P.; Frieden,
C. Biochemistry 1996, 35, 7553-7558. (e) Cistola, D. P.; Kim, K.; Rogl,
H.; Frieden, C. Biochemistry 1996, 35, 7559-7565. (f) Stump, D. G.; Chytil,
F. J. Biol. Chem. 1991, 266, 4622-4630.
method, alkylation efficiencies of 85-95% were typically
obtained. A model for ALBP-Phen, based on the X-ray crystal
structure of an oleic acid-ALBP complex, is shown in Figure
(
17) (a) Sigman, D. S.; Chen, C.-H. B.; Gorin, M. B. Nature 1993, 363,
74-475. (b) Pan, C. Q.; Feng, J. A.; Finkel, S. E.; Landgraf, R.; Sigman,
D.; Johnson, R. C. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 1721-1725.
c)) Ebright, R. H.; Ebright, Y. W.; Pendergrast, P. S.; Gunasekera, A. Proc.
2
2
4
1.
Characterization of ALBP-Phen. Following preparation,
(
ALBP-Phen was purified by gel filtration chromatography to
remove unincorporated 1, and the resulting protein was char-
acterized by a number of spectroscopic and physical methods
sumarized in Table 1. Figure 2 shows the UV/vis spectra of
ALBP (A) and ALBP-Phen (B) at equal concentrations. These
spectra show that attachment of the phenanthroline moiety to
Natl. Acad. Sci. U.S.A. 1990, 87, 2882-2886. (d) Francois, J. C.; Behmoaras,
T. S.; Chassignol, M.; Thuong, N. T.; Sun, J. S.; Helene, C. Biochemistry
1
988, 27, 2272-2276. (e) Sigman, D. S. Acc. Chem Res. 1986, 19, 180-
1
86. (f) Sigman, D. S.; Bruice, T. W.; Mazumder, A.; Sutton, C. L. Acc.
Chem Res. 1993, 26, 98-104.
(
18) (a) Kroll, H. J. Am. Chem. Soc. 1952, 74, 2036-2039. (b) Bender,
M. L.; Turnquist, B. W. J. Amer. Chem. Soc. 1957, 79, 1889-1893. (c)
Meriwether, L.; Westheimer, F. H. J. Am. Chem. Soc. 1956, 78, 5119-
5
123.
(21) For examples of other artificial metalloproteins and metalloenzymes,
see: (a) Sasaki, T.; Kaiser, T. E. Biopolymers 1990, 29, 79-88. (b) Handel,
T.; DeGrado, W. F. J. Am. Chem. Soc. 1990, 112, 6710-6712. (c) Regan,
L.; Clarke, N. D. Biochemistry 1990, 29, 10878-10883. (d) Braxton, S.;
Wells, J. A. Biochemistry 1992, 31, 7796-7801. (e) Higaki, J. N.; Fletterick,
R. J.; Craik, C. S. Trends Biochem. Sci. 1992, 17, 100-104. (f) Mack, D.
P.; Dervan, P. B. Biochemistry 1992, 31, 9399-9405. (g) Ghadiri, M. R.;
Soures, C.; Choi, C. J. Am. Chem. Soc. 1992, 114, 4000-4002. (h)
Desjarlais, J. R.; Berg, J. M. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 2256-
2260. (i) Pessi, A.; Bianchi, E.; Crameri, A.; Venturini, S.; Tramotano, A.;
Sollazzo, M. Nature 1993, 362, 367-369. (j) McGrath, M. E.; Haymore,
B. L.; Summers, N. L.; Craik, C. S.; Fletterick, R. J. Biochemistry 1993,
32, 1914-1919. (k) Wade, W. S.; Koh, J. S.; Han, N.; Hoekstra, D. M.;
Lerner, R. A. J. Am. Chem. Soc. 1993, 115, 4449-4456. (l) Cuenoud, B.;
Schepartz, A. Science 1993, 259, 510-513. (m) Bryson, J. W.; Betz, S. F.;
Lu, H. S.; Suich, D. J.; Zhou, H. X.; O’Neil, K. T.; DeGrado, W. F. Science
1995, 270, 935-941.
(19) (a) Sayre, L. M.; Reddy, K. V.; Jacobson, A. R.; Tang, W. Inorg.
Chem. 1992, 31, 935-937. (b) Reddy, K. V.; Jacobson, A. R.; Kung, J. I.;
Sayre, L. M. Inorg. Chem. 1991, 30, 3520-3525. (c) Weijnen, J. G. J.;
Koudijs, A.; Engbersen, J. F. J. J. Chem. Soc., Perkin Trans. 2 1991, 1121-
1
1
125. (d) Weijnen, J. G. J.; Koudijs, A.; Engbersen, J. F. J Org. Chem.
992, 57, 7258-7265. (e) Nakon, R.; Rechani, P. R.; Angelici, R. J. J.
Am. Chem. Soc. 1974, 96, 2117-2120.
(20) (a) Brown, R. S.; Zamkanei, M.; Cocho, J. L. J. Am. Chem.
Soc.1984, 106, 5222-5228. (b) Schepartz, A. R. B. J. Am. Chem. Soc.
1
987, 109, 1814-1826. (c) Hay, R. W.; Basak, A. K. Chem. Soc., Dalton
Trans. 1982, 1819-1823. (d) Hay, R. W.; Banerjee, P. J. Chem. Soc., Dalton
Trans. 1980, 362-365. (e) Hay, R. W.; Banerjee, P. K. J. Inorg. Biochem.
1
3
1
981, 14, 147-154. (f) Burgeson, I. E.; Kostic, N. M. Inorg. Chem. 1991,
0, 4299-4301. (g) Linkletter, B.; Chin, J. Angew. Chem., Int. Ed. Engl.
995, 34, 472-474. (h) Buckingham, D. A.; Foster, D. M.; Sargeson, A.
M. J. Am. Chem. Soc. 1969, 91, 4102-4110. (i) Suh, J. Acc. Chem Res.
1
992, 25, 273-278. (j) Chin, J. Acc. Chem Res. 1991, 24, 145-152.
(22) Kraulis, P. J. J. Appl. Crystallogr. 1991, 24, 946-956.