Solvolytic Reactions
J. Phys. Chem. B, Vol. 101, No. 28, 1997 5519
TABLE 5: Partition Coefficients KBNPhC and Intrinsic
Solvolytic Rate Constants (kH and kD) for Bis(4-Nitrophenyl)
Carbonate in Isooctane/TTABr/1-Hexanol/Water (H2O and
D2O, Respectively) w/o Microemulsions at 25 °Ca
nucleophilic water of AOT systems will have less need of
catalytic assistance.
Conclusions
H2O
D2O
We have used a method for estimating the distribution of
hexanol between isooctane and surfactant. To simplify, it was
assumed that the concentration of the very poorly water-soluble
1-hexanol in the aqueous pseudophase was negligible, and the
microemulsion was accordingly treated as an (isooctane +
hexanol)/(surfactant + hexanol)/water system.
The alcohol required as cosurfactant to stabilize w/o micro-
emulsions based on SDS and TTABr reduces interfacial polarity
and thereby also tends to reduce the reaction rates of solvolysis
reactions taking place at the interface. As W falls, the
nucleophilicity of interfacial water is probably increased in SDS
systems by increasing the interaction with headgroups, and in
TTABr systems by the structure-enhancing properties of the
alkylammonium salt, whose effective concentration increases
with falling W. The W dependence of the intrinsic rate constant
for solvolysis at the interface depends on the solvolytic
mechanism.
W
kH/s-1
KBNPhC
kD/s-1
KBNPhC
kH/kD
3
4
5
6.84 × 10-5
7.52 × 10-5
9.28 × 10-5
1.23 × 10-4
1.38 × 10-4
1.66 × 10-4
1.72 × 10-4
1.74 × 10-4
1.95 × 10-4
1.99 × 10-4
34.1
86.5
60.4
48.6
50.4
48.7
43.2
42.5
33.9
37.1
4.38 × 10-5
4.80 × 10-5
5.77 × 10-5
6.82 × 10-5
6.94 × 10-5
7.38 × 10-5
7.63 × 10-5
7.95 × 10-5
7.91 × 10-5
7.56 × 10-5
36.4
47.9
45.4
43.9
41.2
39.9
40.2
36.6
36.8
39.4
1.56
1.57
1.61
1.80
1.99
2.25
2.25
2.19
2.46
2.63
7
10
15
20
25
30
40
a [1-hexanol]/[surfactant] ) 5.
Acknowledgment. Financial support from Xunta de Galicia
(Project XUGA 20906B93) and from the Direccio´n General de
Investigacio´n Cient´ıfica y Te´cnica of Spain (Project PB93-0524)
is gratefully acknowledged.
References and Notes
(1) Winsor, P. A. Trans. Faraday Soc. 1948, 44, 376.
(2) Degiorgio, V. Physics of Amphiphiles: Micelles, Vesicles and
Microemulsions; North-Holland: Amsterdam, 1985.
(3) (a) Structure and ReactiVity in ReVerse Micelles; Pile´ni, M. P., Ed.;
Elsevier: Amsterdam, 1989. (b) Zulauf, M.; Eicke, H. F. J. Phys. Chem.
1979, 83, 480.
(4) (a) Wong, M.; Gratzel, M.; Thomas, J. K. J. Am. Chem. Soc. 1976,
98, 2391. (b) Wong, M.; Thomas, J. K.; Nowak, T. J. Am. Chem. Soc.
1977, 99, 4730. (c) Keh, E.; Valeur, B. J. Colloid Interface Sci. 1981, 79,
465. (d) Zinsli, P. E. J. Phys. Chem. 1983, 83, 3223.
(5) (a) Mitchell, D. J.; Ninham, B. W. J. Chem. Soc., Faraday Trans.
2 1981, 77, 601. (b) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J.
Chem. Soc., Faraday Trans. 2 1976, 72, 1525.
Figure 8. Influence of W ) [H2O]/[TTABr] on the solvent isotope
effect kH/kD for the solvolysis of bis(4-nitrophenyl) carbonate in
isooctane/TTABr/1-hexanol/water w/o microemulsions at 25 °C.
SCHEME 4
(6) (a) Bellocq, A. M.; Biais, J.; Clin, B.; Lalanne, P.; Lemanceau, B.
J. Colloid Interface Sci. 1979, 70, 524. (b) Biais, J.; Odberg, L.; Stenius,
P. J. Colloid Interface Sci. 1982, 86, 350. (c) Lalanne, P.; Biais, J.; Clin,
B.; Bellocq, A. M.; Lemanceau, B. J. Chim. Phys. Phys.-Chim. Biol. 1978,
75, 236. (d) Van Nieuwkoop, J.; Snoei, G. J. Colloid Interface Sci. 1985,
103, 400. (e) Biais, J.; Bodet, J. F.; Clin, B.; Lalanne, P.; Roux, D. J.
Phys. Chem. 1986, 90, 5835. (f) Bellocq, A. M.; Biais, J.; Clin, B.; Gelot,
A.; Lalanne, P.; Lemanceau, B. J. Colloid Interface Sci. 1980, 74, 311. (g)
Baviere, M.; Schechter, R.; Wade, W. J. Colloid Interface Sci. 1981, 81,
266.
W. Table 5 lists the values of k and KBNPhC obtained for both
isooctane/TTABr/1-hexanol/H2O and isooctane/TTABr/1-hex-
anol/D2O systems, together with the kH/kD ratio.
(7) Biais, J.; Clin, B.; Lalanne, P.; Lemanceau, B. J. Chim. Phys. Phys.-
Chim. Biol. 1977, 74, 1197.
The solvolysis of BNPhC involves two molecules of water,
one of which acts as an attacking nucleophile and the other as
a catalytic base that removes a proton from the former (Scheme
4).41 In w/o AOT microemulsions,16 a slight decrease in k with
decreasing W is attributed to the decreasing availability of water
for catalysis (reflected by a decrease in the solvent isotope effect)
and the decrease in the basicity of such water as is available,39
predominating over the k-increasing increase in the nucleophi-
licity of interfacial water as W falls. With the cationic surfactant
used in the present work, both the nucleophilicity and the
polarity of interfacial water must fall with W. In keeping with
this, in TTABr systems k falls by a factor of 2.9 as W falls
from 30 to 3, as against a factor of only 2.2 for AOT systems
(Table 5). The fact that, as W falls from 30 to 3, the kH/kD
ratio falls by only a factor of 1.6 in TTABr systems (Table 5
and Figure 8), as against 2.4 in AOT systems, may likewise be
attributed to the different effects of W on the nucleophilicity of
water in the two kinds of system, since the increasingly
(8) (a) Wang, W.; Weber, M. E.; Vera, J. H. J. Colloid Interface Sci.
1994, 168, 422. (b) Ayyud, P.; Maitra, A.; Shah, D. O. J. Chem. Soc.,
Faraday Trans. 1993, 89, 3585. (c) Albuin, E. B.; Rubio, M. A.; Lissi, E.
A. J. Colloid Interface Sci. 1993, 158, 129. (d) Lang, J.; Lalem, N.; Zana,
R. J. Phys. Chem. 1991, 95, 9533.
(9) Lang, J.; Lalem, N.; Zana, R. J. Phys. Chem. 1992, 96, 4667.
(10) (a) Lianos, P.; Zana, R. Chem. Phys. Lett. 1980, 76, 62. (b) Lianos,
P.; Zana, R. Chem. Phys. Lett. 1980, 72, 161. (c) Zana, R.; Yiv, S.;
Strazielle, C.; Lianos, P. J. Colloid Interface Sci. 1981, 80, 208.
(11) (a) Bunton, C. A.; Buzzaccarini, F. de J. Phys. Chem. 1982, 86,
5010. (b) Athanassaki, V.; Bunton, C. A.; Buzzaccarini, F. de J. Phys.
Chem. 1982, 86, 5002. (c) Otero, C.; Rodenas, E. J. Phys. Chem. 1986,
90, 5771.
(12) Bravo, C.; Leis, J. R.; Pen˜a, M. E. J. Phys. Chem. 1992, 96, 1957.
(13) Leung, R.; Shah, D. O. J. Colloid Interface Sci. 1987, 120, 330.
(14) Ritchie, C. D. Physical Organic Chemistry; Marcel Dekler: New
York 1990.
(15) (a) Engbersen, J. F. J.; Engberts, B. F. N. J. Am. Chem. Soc. 1974,
96, 1231. (b) Engbersen, J. F. J.; Engberts, B. F. N. J. Am. Chem. Soc.
1975, 97, 1563. (c) Menninga, L.; Engberts, B. F. N. J. Am. Chem. Soc.
1976, 98, 7652.
(16) Garc´ıa-R´ıo, L.; Leis, J. R.; Iglesias, E. J. Phys. Chem. 1995, 99,
12318.