Page 3 of 5
Journal of the American Chemical Society
ligand exchange methods for nanocrystals, such as quantum
excellent binding ability on target cancer cells and can be used
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
as specific fluorescence imaging agents.
dots and nanorods, and that the as-transferred nanoparticles
will find widespread application in nanobiotechnology.
ASSOCIATED CONTENT
Supporting Information.
Detailed synthesis and characterization of hydrophobic magnetic
nanoparticles, phase transfer, surface functionalization and de-
tailed experimental procedures. This material is available free of
charge via the Internet at http://pubs.acs.org.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
Figure 3. Flow cytometry histograms of CEM (target) and
Ramos (control) cells incubated with buffer only, ASAT,
MNP-ASAT, MNP-ALT, and ALT. The concentrations for all
probes are 1 nM.
The authors are grateful to Dr. Kathryn Williams for her critical
comments during the preparation of this manuscript. This work is
supported by grants awarded by the National Institutes of Health
(GM079359 and CA133086). It is also supported by grants
awarded by the National Key Scientific Program of China
Protein enzymes, while being widely used because of
their high biocatalytic activity, are limited by their low stabil-
ity and low recycling capability. Nanobiocatalysis, whereby an
enzyme is immobilized on a nanoparticle surface while retain-
ing its biocatalytic activity, is of significant importance for
(2011CB911000 and 2013CB933701), the Foundation for Innova-
tive Research Groups of NSFC (Grant 21221003), and China
National Instrumentation Program 2011YQ03012412.
REFERENCES
19,20
industrial reuse.
Therefore, we conducted a facile and ro-
(
1) Park, J.; An, K.; Hwang, Y.; Park, J.; Noh, H.; Kim, J.; Park, J.;
bust covalent enzyme immobilization on the MNP surface
using alkaline phosphatase (AP) as a model enzyme (Scheme
Hwang, N.; Hyeon, T. Nat. Mater. 2004, 3, 891-895.
(2) Lynch, J.; Zhuang, J.; Wang, T.; LaMontagne, D.; Wu, H.; Cao,
Y. C. J. Am. Chem. Soc. 2011, 133, 12664-12674.
(3) Perez, J. M.; Josephson, L.; O’Loughlin, T.; Hogemann, D.;
Weissleder, T. Nat. Biotechnol. 2002, 20, 816-820.
(4) Huh, Y.; Jun, Y.; Song, H.; Kim, S.; Choi, J.; Lee, J.; Yoon, S.;
Kim, K.; Shin, J.; Suh, J.; Cheon, J. J. Am. Chem. Soc. 2005, 127,
2
). The hydrolysis of p-nitrophenyl phosphate can be cata-
lyzed efficiently by AP when pH=9.8. The assay results (Fig-
ure S2, SI) indicated that MNP-APs possess excellent catalytic
activity. A 10-round catalytic recycle of MNP-AP demonstrat-
ed that MNP-AP retains its catalytic activity after many uses,
indicating that the as-transferred MNP is an excellent nano-
supporter for enzyme immobilization (Figure S3, SI).
1
2387-12391.
(
5) Chen, T.; Ocsoy, I.; Yuan, Q.; Wang, R.; You, M.; Zhao, Z.;
Song, E.; Zhang, X.; Tan, W. J. Am. Chem. Soc. 2012, 134,
13164-12167.
(6) Cheng, K.; Peng, S.; Xu, C.; Sun, S. J. Am. Chem. Soc. 2009,
31, 10637-10644.
1
(
7) Chen, T.; Shukoor, M. I. Wang, T.; Zhao, Z.; Yuan, Q.; Bam-
rungsap, S.; Xiong, X.; Tan, W. ACS Nano 2011, 5, 7866-7873.
8) Fortin, J.; Wilhelm, C.; Servais, J.; Menager, C.; Bacri, J.;
Gazeau, F. J. Am. Chem. Soc. 2007, 129, 2628-2635.
(
(9) Guardia, P.; Corato, R. D.; Lartigue, L.; Wilhelm, C.; Espinosa,
A.; Garcia-Hernandez, M.; Gazeau, F.; Manna, L.; Pellegrino, T.
ACS Nano 2012, 6, 3080-3091.
(10) Lee, J.; Jang, J. Choi, J.; Moon, S. H.; Noh, S.; Kim, J.; Kim, J.;
Kim, I.; Park, K. I.; Cheon, J. Nat. Nanotechnol. 2011, 6, 418-
422.
(11) Martinez-Boubeta, C.; Simeonidis, K.; Makridis, A.; Angelak-
eris, M.; Lglesias, O.; Guardia, P.; Cabot, A.; Yedra, L.; Estrade,
S.; Peiro, F.; Saghi, Z.; Midgley, P. A.; Conde-Leboran, I.;
Serantes, D.; Baldomir, D. Sci. Rep. 2013, 3, 1652-1659.
Scheme 2. Covalent MNP surface functionalization with
alkaline phosphatase.
In summary, we have developed a facile, high efficiency,
single-phase and low cost method for aqueous phase transfer
of hydrophobic MNPs using DHCA and THF. Without any
complicated organic synthesis, MNPs neutralized with NaOH
show excellent water solubility and stability in biological envi-
ronments, demonstrating that the approach is more cost-
effective and labor-efficient than the traditional two-phase
ligand exchange method. Moreover, we report the first hydro-
philic nanoparticles with wide pH-range solubility and pH-
controllable aggregation. The as-transferred MNPs with car-
boxylate can be readily adapted by further surface functionali-
zation which is simple and robust. Based on these superior
features, we believe that this method can be applied to other
(
12) Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose,
S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss,
S. Science 2005, 307, 538-544.
(13) Tong, S.; Hou, S.; Ren, B.; Zheng, Z.; Bao, G. Nano Lett. 2011,
11, 3720-3726.
(14) Xu, C.; Xu, K.; Gu, H.; Zheng, R.; Liu, H.; Zhang, X.; Guo, Z.;
Xu, B. J. Am. Chem. Soc. 2004, 126, 9938-9939.
(
15) Shultz, M. D.; Reveles, J. U.; Khanna, S. N.; Carpenter, E. E. J.
Am. Chem. Soc. 2007, 129, 2482-2487.
(
16) Mazur, M.; Barras, A.; Kuncser, V.; Galatanu, A.; Zaitzev, V.;
Turcheniuk, K. V.; Woisel, P.; Lyskawa, J.; Laure, W.; Siriwar-
ACS Paragon Plus Environment