REACTIONS OF POLYALLYLAMINE WITH ARYL ACETATES AND METHYL CARBONATES
135
O
δ -
O
REFERENCES
δ – = – 0.29
δ+ = + 0.45
Me
C
Ar
δ+
1. Dugas H. Bioorganic Chemistry. A Chemical Approach to Enzyme
Action (3rd edn). Springer: New York, 1996; 337–344.
. (a) Jencks W, Gilchrist M. J. Am. Chem. Soc. 1968; 90: 2622–
637; (b) Satterthwait A, Jencks W. J. Am. Chem. Soc. 1974; 96:
018–7031; (c) Bond PM, Castro EA, Moodie RB. J. Chem. Soc.,
H N H N H
NH2
2
2
2
7
m
n
Perkin Trans. 2 1976; 68–72; (d) Castro EA, Freudenberg M. J.
Org. Chem. 1980; 45: 906–910; (e) Castro EA, Ureta C. J. Org.
Chem. 1990; 55: 1676–1979; (f) Castro EA, Ib a´ n˜ ez F, Lagos S,
Schick M, Santos JG. J. Org. Chem. 1992; 57: 2691–2694; (g)
Castro EA, Cubillos M, Santos JG. J. Org. Chem. 2001; 66: 6000–
Scheme 2. Transition state for the reactions of PAA with
aryl acetates
6
. (a) Bond PM, Moodie RB. J. Chem. Soc., Perkin Trans. 2
003.
3
4
5
1
9
976; 679–682; (b) Castro EA, Gil FJ. J. Am. Chem. Soc. 1977;
9: 7611–7612.
respectively) were discussed earlier and those for the
sensitivity to the leaving group (ꢁ ¼ ꢃ 0.29 and ꢃ0.28)
lg
. (a) Castro EA, Iba n˜ ez F, Sait u´ a AM, Santos JG. J. Chem. Res. (S)
1993; 56–57; (b) Castro EA, Aliaga M, Campod o´ nico P, Santos
JG. J. Org. Chem. 2002; 67: 8911–8916.
23
are near the expected value for a concerted mechanism.
Scheme 2 shows the transition state for the acetate esters
with PAA.
. Koh HJ, Lee JW, Lee HW, Lee I. Can. J. Chem. 1998; 76:
7
10–716.
6. Gresser MJ, Jencks WP. J. Am. Chem. Soc. 1977; 99: 6963–6970.
7
Logarithmic plots of the experimental nucleophilic rate
constant values against those calculated with Eqns (3)
and (4) (not shown) are linear withal a slope of unity and
zero intercept.
. (a) Castro EA, And u´ jar M, Campod o´ nico P, Santos JG. Int. J.
Chem. Kinet. 2002; 34: 309–315; (b) Castro EA, And u´ jar M, Toro
A, Santos JG. J. Org. Chem. 2003; 68: 3608–3618; (c) Castro EA,
Campod o´ nico P, Toro A, Santos JG. J. Org. Chem. 2003; 68:
2
c
2d
2f
3a
5
930–5935.
The pyridinolyses of NPA, DNPA, TNPA, NPC,
3b
2f
8. (a) Arcelli A. Macromolecules 1999; 32: 2910–2919; (b) Arcelli
A, Concilio C. J. Org. Chem. 1996; 61: 1682–1688.
DNPC and TNPC are stepwise, whereas the reactions
of these substrates with PAA are concerted (this work).
The change in mechanism for the latter reactions can be
attributed to greater instability of the tetrahedral inter-
mediate formed with the polyamine or else to a transition
state for the concerted path that is more stable (relative to
reactants) than that for the stepwise reaction. In the same
9. (a) Ochiai H, Anabuki Y, Kojima O, Tominaga K, Murakami I. J.
Polym. Sci. B 1990; 28: 233–240; (b) Suh J, Paik H, Hwang B.
Bioorg. Chem. 1994; 22: 318–327; (c) Nagasawa M, Murase T,
Kondo K. J. Phys. Chem. 1965; 69: 4005–4012; (d) Wandrey C,
Hunkeler D. In Handbook of Polyelectrolytes and Their Applica-
tions, vol. 2, Tripathy SK, Kumar J, Nalwa HS (eds). American
Scientific Publishers: Stevenson Ranch, California, 2002; Chapt.
5
, 147–169.
4a
way, the reactions of DNPC with anilines, DNPA with
10. (a) Seo T, Unishi T, Miwa K, Iijima T. Pure Appl. Chem. 1996;
A33: 1025–1047; (b) Seo T, Take S, Miwa K, Hamada K, Iijima T.
Macromolecules 1991; 24: 4255–4263.
1. Overberger CG, Smith TW. Macromolecules 1975; 8: 401–407,
and references cited therein.
2. Letsinger R, Savereide T. J. Am. Chem. Soc. 1962; 84: 3122–3127.
3. (a) Klotz IM, Stryker VH. J. Am. Chem. Soc. 1968; 90: 2717–
2719; (b) Nango M, Klotz IM. J. Polym. Sci., Polym. Chem. Ed.
1978; 16: 1265–1273.
4. (a) Garc ´ı a del Vado MA, Rodr ´ı guez A, Echevarr ´ı a G, Santos JG,
L o´ pez C, Garc ´ı a-Blanco F. Int. J. Chem. Kinet. 1995; 27: 929–
2e
SA amines and NPC with SA amines and quinuclidi-
4b
nes are stepwise, in contrast to the reactions of these
substrates with PAA, which are concerted. These results
show the destabilization of the putative tetrahedral inter-
mediate formed with PAA.
1
1
1
It is known that SA amines and quinuclidines destabi-
lize the putative tetrahedral intermediate relative to
anilines and pyridines owing to a better leaving ability
of the two former amines from the intermediate. The
sequence of leaving abilities of monomeric amines
1
9
39; (b) Garc ´ı a del Vado MA, Echevarr ´ı a G, Basagoit ´ı a A, Santos
JG, Garc ´ı a-Blanco F. Int. J. Chem. Kinet. 1998; 30: 1–6.
5. Kirkien-Konasiewics A, Maccoll A. J. Chem. Soc. 1964; 1267–
1274.
6. Pianka M. J. Sci. Food Agric. 1996; 17: 47–56; Huang TL,
Szekacs A, Uematsu T, Kurvano E, Parkinson A, Hammock
BD. Pharmacol. Res. 1993; 10: 639–647.
7. Baptista MS. In Handbook of Polyelectrolytes and Their Applica-
tions, vol. 1, Tripathy SK, Kumar J, Nalwa HS (eds). American
Scientific Publishers: Stevenson Ranch, California, 2002; Chapt.
1
1
19
is quinuclidines > SA amines > anilines > pyridines.
Therefore, considering that the mechanism of the title
reactions is concerted, it is possible that the leaving
ability of PAA from the putative tetrahedral intermediate
is the greatest compared with monomeric amines. There-
fore, the stability of tetrahedral intermediates would
decrease in the sequence pyridines > anilines > SA
amines > quinuclidines > PAA.
1
1
7
, 165–169.
8. Castro EA, Ib a´ n˜ ez F, Salas M, Santos JG. J. Org. Chem. 1991;
6: 4819–4921; Castro EA, Salas M, Santos JG. J. Org. Chem.
5
1994; 59: 30–32.
9. Castro EA, Mu n˜ oz P, Santos JG. J. Org. Chem. 1999; 64: 8298–
1
2
2
8
301.
0. Castro EA, Leandro L, Mill a´ n P, Santos JG. J Org. Chem. 1999;
4:1953–1957.
6
Acknowledgements
1. Williams A. Free Energy Relationships in Organic and Bio-
Organic Chemistry. Royal Society of Chemistry: Cambridge,
2003; Chapt. 7, 171.
2. Albert A, Serjeant EP. The Determination of Ionization Constants.
Chapman and Hall: London, 1971; 87.
We thank MECESUP (Chile) (Projects PUC-0004 and
RED QUIMICA UCH-01), FONDECYT (Chile) (Project
1020538) and DGI (Spain) (Project BQU2003-07281) for
financial assistance.
2
2
3. Castro EA, Pavez P, Santos JG. J. Org. Chem. 2002; 67: 4494–
4497.
Copyright # 2006 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2006; 19: 129–135