E
B. Y.-H. Tan, Y.-C. Teo
Letter
Synlett
phenols. With its tolerance towards different functional
groups present in iodobenzene, this protocol is expected to
be particularly useful in industrial applications.
315. (g) Thakur, K. G.; Sekar, G. Chem. Commun. 2011, 47, 6692.
(h) Ding, G.; Han, H.; Jiang, T.; Wu, T.; Han, B. Chem. Commun.
2014, 50, 9072. (i) Jing, L.; Wei, J.; Zhou, L.; Huang, Z.; Li, Z.;
Zhou, X. Chem. Commun. 2010, 46, 4767. (j) Chen, J.; Yuan, T.;
Hao, W.; Cai, M. Catal. Commun. 2011, 12, 1463. (k) Yang, K.; Li,
Z.; Wang, Z.; Yao, Z.; Jiang, S. Org. Lett. 2011, 13, 4340.
Acknowledgment
(10) For reports on low toxicity of copper catalyst, see: (a) Gujadhur,
R.; Venkataraman, D.; Kintigh, J. T. Tetrahedron Lett. 2001, 42,
4791. (b) Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003,
42, 5400. (c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev.
2004, 248, 2337.
We would like to thank the National Institute of Education and
Nanyang Technological University (RP 5/13 TYC) for the funding of
this work.
(11) For our group’s published ligand-free copper catalysis, see:
(a) Yong, F.-F.; Teo, Y.-C.; Tay, S.-H.; Tan, B. Y.-H.; Lim, K.-H. Tet-
rahedron Lett. 2011, 52, 1161. (b) Yong, F.-F.; Teo, Y.-C.; Chua, G.-
L.; Lim, G. S.; Lin, Y. Tetrahedron Lett. 2011, 52, 1169. (c) Tan, B.
Y.-H.; Teo, Y.-C.; Seow, A.-H. Eur. J. Org. Chem. 2014, 1541.
(12) For reports on sustainable solvents in organic reactions, see:
(a) Li, C.-J.; Trost, B. M. Proc. Natl. Acad. Sci. U.S.A. 2008, 105,
13197. (b) DeSimone, J. M. Science 2002, 297, 799. (c) Capello,
C.; Fischer, U.; Hungerbühler, K. Green Chem. 2007, 9, 927.
(13) For C–O cross-coupling reactions which encountered low yields
with sterically hindered aryl halides, see: (a) Yong, F.-F.; Teo, Y.-
C.; Yan, Y.-K.; Chua, G.-L. Synlett 2012, 101. (b) Yang, H.; Xi, C.;
Miao, Z.; Chen, R. Eur. J. Org. Chem. 2011, 3353. (c) Cristau, H.-J.;
Cellier, P. P.; Hamada, S.; Spindler, J.-F.; Taillefer, M. Org. Lett.
2004, 6, 913.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) For utility of phenols in synthetic chemistry, see: (a) Pillai, M.;
Kothari, K.; Jurisson, S. Appl. Radiat. Isot. 1995, 46, 923. (b) Pillai,
M.; Barnes, C.; Schlemper, E. Polyhedron 1994, 13, 701.
(c) Merlini, L.; Zanarotti, A.; Pelter, A.; Rochefort, M. P.; Hänsel,
R. J. Chem. Soc., Perkin Trans. 1 1980, 775. (d) Brezinsky, K.;
Pecullan, M.; Glassman, I. J. Phys. Chem. A 1998, 102, 8614.
(2) For utility of phenols in material chemistry, see: (a) Uyama, H.;
Lohavisavapanich, C.; Ikeda, R.; Kobayashi, S. Macromolecules
1998, 31, 554. (b) Serman, C. J.; Xu, Y.; Painter, P. C.; Coleman,
M. M. Polymer 1991, 32, 516. (c) Serman, C. J.; Painter, P. C.;
Coleman, M. M. Polymer 1991, 32, 1049.
(3) For utility of phenols in pharmaceuticals, see: (a) Lloyd, J. In
Techniques of Neurolysis; Springer: New York, 1989, 33–44.
(b) Kirazli, Y.; On, A. Y.; Kismali, B.; Aksit, R. Am. J. Phys. Med.
Rehabil. 1998, 77, 510. (c) Cutting, W.; Mehrtens, H.; Tainter, M.
J. Am. Med. Assoc. 1933, 101, 193.
(14) For reports with mechanism for copper-catalyzed cross-cou-
pling reactions, see: (a) Strieter, E. R.; Bhayana, B.; Buchwald, S.
L. J. Am. Chem. Soc. 2008, 131, 78. (b) Rao, H.; Fu, H. Synlett 2011,
745.
(15) Yamamoto, T. Synth. Commun. 1979, 9, 219.
(16) General Procedure for the Synthesis of Substituted Phenols
via O-Arylation of p-Toluenesulfonic Acid: A mixture of Cu2O
(Sigma-Aldrich, 99.99% purity, 0.147 mmol), Cs2CO3 (2.94
mmol), distilled H2O (0.2 mL), aryl halide (1.47 mmol) and p-
toluenesulfonic acid (TsOH) solution (0.3 mL, 2.45 mol/dm3)
were added to a reaction vial and a screw cap was fitted to it.
The reaction mixture was stirred under air in a closed system at
120 °C for 24 h, following which the heterogeneous mixture
was cooled to r.t. and diluted with CH2Cl2. The combined
organic extracts were dried with anhyd Na2SO4 and the solvent
was removed under reduced pressure. The crude product was
loaded onto the silica gel column using minimal amounts of
CH2Cl2 and was purified by silica gel column chromatography to
afford the N-arylated product.
(4) Hock, H.; Lang, S. Eur. J. Inorg. Chem. 1944, 77, 257.
(5) Weber, M.; Weber, M.; Kleine-Boymann, M. In Ullmann’s Ency-
clopedia of Industrial Chemistry; Wiley-VCH Verlag: Weinheim,
2000.
(6) For reports on the synthesis of phenols through diazoarenes,
see: (a) Cohen, T.; Dietz, A. G.; Miser, J. R. J. Org. Chem. 1977, 42,
2053. (b) Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Org. Biomol. Chem.
2013, 11, 1582.
(7) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.
(8) For reports on the palladium-catalyzed direct hydroxylation of
aryl halides, see: (a) Anderson, K. W.; Ikawa, T.; Tundel, R. E.;
Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694. (b) Cheung, C.
W.; Buchwald, S. L. J. Org. Chem. 2014, 79, 5351. (c) Sergeev, A.
G.; Schulz, T.; Torborg, C.; Spannenberg, A.; Neumann, H.; Beller,
M. Angew. Chem. Int. Ed. 2009, 48, 7595. (d) Yu, C.-W.; Chen, G.
S.; Huang, C.-W.; Chern, J.-W. Org. Lett. 2012, 14, 3688.
(9) For reports on the copper-catalyzed direct hydroxylation of aryl
halides, see: (a) Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew.
Chem. Int. Ed. 2009, 48, 8725. (b) Xiao, Y.; Xu, Y.; Cheon, H.-S.;
Chae, J. J. Org. Chem. 2013, 78, 5804. (c) Yang, D.; Fu, H. Chem.
Eur. J. 2010, 16, 2366. (d) Zhao, D.; Wu, N.; Zhang, S.; Xi, P.; Su,
X.; Lan, J.; You, J. Angew. Chem. Int. Ed. 2009, 48, 8729. (e) Amal
Joseph, P. J.; Priyadarshini, S.; Lakshmi Kantam, M.;
Maheswaran, H. Catal. Sci. Tech. 2011, 1, 582. (f) Wang, D.;
Kuang, D.; Zhang, F.; Tang, S.; Jiang, W. Eur. J. Org. Chem. 2014,
Phenol (2a): Following the general procedure using p-toluene-
sulfonic acid solution (0.3 mL, 2.45 mol/dm3) and iodobenzene
(0.165 mL, 1.47 mmol), the product (122 mg, 89% yield) was
obtained as a colorless oil after purification by flash chromatog-
raphy (hexane–EtOAc, 80:20). 1H NMR (400 MHz, CDCl3): δ =
7.23 (t, J = 8.6 Hz, 2 H), 6.92 (t, J = 7.6 Hz, 1 H), 6.83 (d, J = 7.6 Hz,
2 H), 5.67 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 155.3,
129.7, 120.9, 115.3. GC–MS: tR = 4.91 min, M/Z = 94. HRMS: m/z
[M+] calcd for C6H6O: 95.0495; found: 95.0500.
2-Fluorophenol (2b): Following the general procedure using p-
toluenesulfonic acid solution (0.3 mL, 2.45 mol/dm3) and 2-fluo-
roiodobenzene (0.172 mL, 1.47 mmol), the product (66 mg, 40%
yield) was obtained as a colorless oil after purification by flash
chromatography (hexane–EtOAc, 80:20). 1H NMR (400 MHz,
CDCl3): δ = 7.02–7.17 (m, 3 H), 6.85–6.90 (m, 1 H), 5.59 (br s, 1
H). 13C NMR (100 MHz, CDCl3): δ = 151.1 (J = 236.2 Hz), 143.4
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–F