Paper
Dalton Transactions
tive effect of both the NHC and metal centre is vital to the
success of these decontamination reactions. Comparison of
the simple commercially available imidazoline/imidazolinium
silver NHC complexes, (1–5)-Ag, these were found to provide
efficient destruction under UV conditions in 5 h, primarily to
the oxidation product, CEES-O, and also to the dehydrohalo-
genation product. The choice of metal centre is key for these
transformations as reactions with complexes (1–3)-V provide
complete destruction of CEES within 5 h and allowed for
destruction of nerve simulants through cleavage of P–OAr
bond to form substituted phenols. Preliminary studies using
artificial sunlight (from a commercially available SAD lamp)
also show reasonable levels of CEES decomposition within the
same 5 h timeframe, presumably a result which could be
improved with suitable ligand tuning.
4 J. Paxman and R. Harris, A Higher Form of Killing: The Secret
History of Chemical and Biological Warfare, Arrow, London,
2001.
5 J. L. McWilliams and R. J. Steel, Gas! The Battle for Ypres,
1915, Vanwell Publishing Limited, Canada, 1985.
6 Y. C. Yang, J. A. Baker and J. R. Ward, Chem. Rev., 1992, 92,
1729–1743.
7 F. M. Menger and A. R. Elrington, J. Am. Chem. Soc., 1991,
113, 9621–9624.
8 F. M. Menger and A. R. Elrington, J. Am. Chem. Soc., 1990,
112, 8201–8203.
9 I. A. Fallis, P. C. Griffiths, T. Cosgrove, C. A. Dreiss,
N. Govan, R. K. Heenan, I. Holden, R. L. Jenkins,
S. J. Mitchell, S. Notman, J. A. Platts, J. Riches and
T. Tatchell, J. Am. Chem. Soc., 2009, 131, 9746–9755.
Examination of the cooperative effect of metal centre and 10 B. M. Smith, Chem. Soc. Rev., 2008, 37, 470–478.
NHC through use of a hemi-labile bidentate aryloxide tethered 11 E. Marshall, Science, 1984, 224, 130–132.
NHC complex (6-M) shows clean destruction to EVS at 80 °C 12 J. P. Fitch, E. Raber and D. R. Imbro, Science, 2003, 302,
within a few hours. The rate of destruction is increased, and
the reaction rendered catalytic in NHC via addition of further 13 L. M. Eubanks, T. J. Dickerson and K. D. Janda, Chem. Soc.
equivalents of alkali metal base or silver(I) oxide. Catalytic Rev., 2007, 36, 458–470.
destruction of all three CWA simulants can also be achieved 14 G. W. Wagner, P. W. Bartram, O. Koper and K. J. Klabunde,
using in situ generated iron or nickel NHC complexes. This J. Phys. Chem. B, 1999, 103, 3225–3228.
new class of CWA simulant degradants show promise, and 15 G. W. Wagner, O. B. Koper, E. Lucas, S. Decker and
1350–1354.
further work is in progress to improve reactivity while retaining
the air-stability of the metal–NHC complexes.
K. J. Klabunde, J. Phys. Chem. B, 2000, 104, 5118–
5123.
16 Y. Y. Liu, C. T. Buru, A. J. Howarth, J. J. Mahle,
J. H. Buchanan, J. B. DeCoste, J. T. Hupp and O. K. Farha,
J. Mater. Chem. A, 2016, 4, 13809–13813.
17 N. B. Munro, S. S. Talmage, G. D. Griffin, L. C. Waters,
A. P. Watson, J. F. King and V. Hauschild, Environ. Health
Perspect., 1999, 107, 933–974.
Conflicts of interest
There are no conflicts to declare.
18 Y. J. Jang, K. Kim, O. G. Tsay, D. A. Atwood and
D. G. Churchill, Chem. Rev., 2015, 115, PR1–PR76.
19 K. Kim, O. G. Tsay, D. A. Atwood and D. G. Churchill,
Chem. Rev., 2011, 111, 5345–5403.
20 W. A. Herrmann, Angew. Chem., Int. Ed., 2002, 41, 1290–
1309.
21 T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34,
18–29.
22 C. M. Crudden and D. P. Allen, Coord. Chem. Rev., 2004,
248, 2247–2273.
23 D. Bourissou, O. Guerret, F. P. Gabbai and G. Bertrand,
Chem. Rev., 2000, 100, 39–91.
24 J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A. Bhattacharyya,
W. S. Hwang and I. J. B. Lin, Chem. Rev., 2009, 109, 3561–
3598.
Acknowledgements
We thank DSTL for financial support, and the EPSRC for
funding through EP/J018139/1 and the UK Catalysis Hub EP/
K014714/1. This project has also received funding from the
European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No 740311). We thank Karlotta van Rees and
Peter Saghy for assistance with the synthesis of the silver and
copper complexes, Euan Doidge for ICP-OES analysis,
University of Edinburgh NMR spectroscopy and Mass spec-
trometry departments for support.
25 S. P. Nolan, Acc. Chem. Res., 2011, 44, 91–100.
26 S. Gaillard, C. S. J. Cazin and S. P. Nolan, Acc. Chem. Res.,
2012, 45, 778–787.
Notes and references
1 J. B. Tucker, War of Nerves: Chemical Warfare from World 27 I. J. B. Lin and C. S. Vasam, Coord. Chem. Rev., 2007, 251,
War I to Al-Qaeda, Pantheon Books, New York, 2006. 642–670.
2 K. Coleman, History of Chemical Warfare Pelgrave, 28 P. L. Arnold, M. S. Sanford and S. M. Pearson, J. Am. Chem.
Macmillan, Basingstoke, 2005. Soc., 2009, 131, 13912–13913.
3 E. Croddy, Chemical and Biological Warfare, Springer-Verlag, 29 D. A. Bulushev, L. Kiwi-Minsker, V. I. Zaikovskii and
New York, 2001. A. Renken, J. Catal., 2000, 193, 145–153.
A
Dalton Trans.
This journal is © The Royal Society of Chemistry 2018