Article
Inorganic Chemistry, Vol. 49, No. 7, 2010 3123
ν(H2O) 3399.4 cm-1. UV-vis (MeOH)/nm: 395 (sh, ε =
6728 M-1cm-1), 599 (sh, ε = 1040 M-1cm-1), 968 (sh, ε =
402 M-1cm-1). Anal. calcd for C21H40N10O16Ni2: C, 31.26; H,
4.96; N, 17.37; Ni, 14.56%. Found: C, 31.36; H, 4.73; N, 17.39;
Ni, 14.58%.
Computational Details. Density functional theory (DFT)
calculations were carried out with the Gaussian 03 package.17
The exchange functional of Becke and the correlation functional
of Lee, Yang, and Parr (B3LYP)18,19 were employed in combi-
nation with the Stuttgart-Dresden (SDD) effective core poten-
tials20 for the Ni atoms and the 6-31G(d) basis set21 for the
remaining elements. Frequency calculations were performed
within the harmonic approximation to check whether the opti-
mized geometries correspond to energy minima (NIMAG = 0)
on the potential energy surface. The J value for 1 was calculated
following the previously reported method,22 using the broken-
symmetry approach to estimate the energy of the low-spin
states. We have used H = -2JS1S2 convention for the exchange
Hamiltonian, the equation for calculating the J value is J =
[E(QT) - E(BSS)]/6, where E(QT) is the energy of the quintet
state of the dinuclear Ni complex and E(BSS) is the energy of its
broken-symmetry singlet state. Vertical electronic excitations
based on UB3LYP optimized geometry were computed using
the time-dependent density functional theory (TD-DFT) form-
alism23 in methanol using a conductor-like polarizable conti-
nuum model (CPCM).24
Figure 1. ORTEP view of the cationic dinuclear complex of 1.
Table 2. Selected Coordination Bond Lengths (Angstroms) and Angles (Degrees)
for 1 with Esds in Parentheses
Ni(1)-N(1)
2.218(5)
2.011(5)
2.039(4)
1.995(5)
2.104(5)
2.185(5)
2.970(1)
83.2(2)
169.30(19)
104.1(2)
93.0(2)
87.12(19)
88.36(19)
171.9(2)
88.1(2)
88.3(2)
84.0(2)
93.3(2)
86.05(19)
94.95(19)
88.53(19)
176.4(2)
Ni(2)-N(4)
Ni(2)-N(5)
Ni(2)-O(1)
Ni(2)-O(2)
Ni(2)-O(4)
Ni(2)-O(5)
2.231(6)
2.004(6)
2.047(4)
1.996(5)
2.109(6)
2.138(5)
Results and Discussion
Ni(1)-N(2)
Ni(1)-O(1)
Description of Crystal Structure. The X-ray structural
determination of compound 1 reveals a dinuclear nickel
cationic complex and a nitrate anion. An ORTEP view of
μ-phenoxo-dinickel(II) complex of 1 with an atom label-
ing scheme is shown in Figure 1. The nickel ions exhibit a
distorted octahedral coordination sphere comprised in
the equatorial plane of the phenoxido-bridged oxygen,
the hydroxyl group, and the imine and amine nitrogen
donors. The axial positions are occupied by an aqua
and a nitrate oxygen. The Ni-N(amine) bond distances
Ni(1)-O(2)
Ni(1)-O(3)
Ni(1)-O(6)
Ni(1)-Ni(2)
N(2)-Ni(1)-N(1)
O(1)-Ni(1)-N(1)
O(2)-Ni(1)-N(1)
O(3)-Ni(1)-N(1)
O(6)-Ni(1)-N(1)
N(2)-Ni(1)-O(1)
O(2)-Ni(1)-N(2)
N(2)-Ni(1)-O(3)
N(2)-Ni(1)-O(6)
O(2)-Ni(1)-O(1)
O(1)-Ni(1)-O(3)
O(1)-Ni(1)-O(6)
O(2)-Ni(1)-O(3)
O(2)-Ni(1)-O(6)
O(3)-Ni(1)-O(6)
N(5)-Ni(2)-N(4)
O(1)-Ni(2)-N(4)
O(2)-Ni(2)-N(4)
O(4)-Ni(2)-N(4)
O(5)-Ni(2)-N(4)
N(5)-Ni(2)-O(1)
O(2)-Ni(2)-N(5)
N(5)-Ni(2)-O(4)
N(5)-Ni(2)-O(5)
O(2)-Ni(2)-O(1)
O(1)-Ni(2)-O(4)
O(1)-Ni(2)-O(5)
O(2)-Ni(2)-O(4)
O(2)-Ni(2)-O(5)
O(4)-Ni(2)-O(5)
83.4(2)
169.1(2)
104.7(2)
92.9(2)
86.2(2)
88.31(19)
171.9(2)
86.8(2)
88.5(2)
83.79(18)
93.6(2)
86.56(17)
92.2(2)
92.62(19)
175.2(2)
˚
(2.218(5), 2.231(6) A) are significantly longer than the
(17) Frisch, M. J.;Trucks, G. W.; Schlegel H. B.; Scuseria G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J .B.; Ortiz, J. V.; Cui, Q.; Baboul, A.G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; M. A. Al- LahamPeng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen,
W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01;
Gaussian, Inc., Wallingford CT, 2004.
˚
Ni-N(imine) ones (2.011(5), 2.004(6) A), and the Ni-O
bond lengths appear slightly shorter for the phenoxido
oxygen when compared with the hydroxyl group (2.043(4) vs
1.996(5) A, mean values). On the other hand, the axial
Ni-ONO2 and Ni-OH2 distances average to 2.161(5)
and 2.106(6) A, respectively. The bond angles Ni(1)-
O(1)-Ni(2) and Ni(1)-O(2)-Ni(2) of 93.26(17) and
96.2(2)ꢀ, respectively, lead to an intermetallic separation
of 2.970(1) A (see Table 2). The piperazine moieties
˚
˚
˚
assume the expected chair conformation and are proto-
nated, as deduced for the charge balance and the occur-
rence of H-bond distances. The crystal packing shows an
extended H-bonding scheme (see Supporting Infor-
mation). In fact, protonated piperazine nitrogens and
coordinated water molecules, acting as H-donors toward
nitrate anions, lead to a three-dimensional (3D) supra-
molecular arrangement.
(18) Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098.
(19) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter 1988,
37, 785.
(20) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86,
866.
(21) Petersson, G. A.; Al-Laham, M. A. J. Chem. Phys. 1991, 94, 6081.
(22) Ruiz, E.; Rodriguez-Fortea, A.; Cano, J.; Alvarez, S.; Alemany, P.
J. Comput. Chem. 2003, 24, 982.
(23) (a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.
1998, 109, 8218. (b) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R.
J. Chem. Phys. 1998, 108, 4439.
Magnetic Study. The variable temperature magnetic
data of the complex were collected on a polycrystalline
sample in the temperature range of 300-2 K, using an
(24) (a) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995. (b) Cossi,
M.; Barone, V. J. Chem. Phys. 2001, 115, 4708. (c) Cossi, M.; Rega, N.;
Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.