ACS Catalysis
Letter
R.; Silks, L. A. P.; Hanson, S. K. Aerobic Oxidation Reactions
Catalyzed by Vanadium Complexes of Bis(Phenolate) Ligands. Inorg.
Chem. 2012, 51, 7354−7361. (h) Chan, J. M. W.; Bauer, S.; Sorek, H.;
Sreekumar, S.; Wang, K.; Toste, F. D. Studies on the Vanadium-
Catalyzed Nonoxidative Depolymerization of Miscanthus giganteus-
Derived Lignin. ACS Catal. 2013, 3, 1369−1377. (i) Biannic, B.;
Bozell, J. J. Efficient Cobalt-Catalyzed Oxidative Conversion of Lignin
Models to Benzoquinones. Org. Lett. 2013, 15, 2730−2733.
Catalyzed by MIL-100(Fe) Supported Pd-Ni Bmnps. Green Chem.
2017, 19, 4538−4543. (g) Wu, X.; Fan, X.; Xie, S.; Lin, J.; Cheng, J.;
Zhang, Q.; Chen, L.; Wang, Y. Solar Energy-Driven Lignin-First
Approach to Full Utilization of Lignocellulosic Biomass under Mild
Conditions. Nat. Catal. 2018, 1, 772−780.
(7) Nichols, J. M.; Bishop, L. M.; Bergman, R. G.; Ellman, J. A.
Catalytic C-O Bond Cleavage of 2-Aryloxy-1-Arylethanols and Its
Application to the Depolymerization of Lignin-Related Polymers. J.
Am. Chem. Soc. 2010, 132, 12554−12555.
(8) Wu, A.; Patrick, B. O.; Chung, E.; James, B. R. Hydrogenolysis of
β -O-4 Lignin Model Dimers by A Ruthenium-Xantphos Catalyst.
Dalton Trans 2012, 41, 11093−11106.
(9) Huo, W.; Li, W.; Zhang, M.; Fan, W.; Chang, H.-M.; Jameel, H.
Effective C-O Bond Cleavage of Lignin β-O-4 Model Compounds: A
(j) Zhang, J.; Liu, Y.; Chiba, S.; Loh, T.-P. Chemical Conversion
Of β-O-4 Lignin Linkage Models through Cu-Catalyzed Aerobic
Amide Bond Formation. Chem. Commun. 2013, 49, 11439−11441.
(k) Lancefield, C. S.; Ojo, O. S.; Tran, F.; Westwood, N. J. Isolation
of Functionalized Phenolic Monomers through Selective Oxidation
and C-O Bond Cleavage of the β-O-4 Linkages in Lignin. Angew.
Chem., Int. Ed. 2015, 54, 258−262. (l) Hanson, S. K.; Baker, R. T.
Knocking on Wood: Base Metal Complexes as Catalysts for Selective
Oxidation of Lignin Models and Extracts. Acc. Chem. Res. 2015, 48,
New RuHCl(CO)(PPh ) /KOH Catalytic System. Catal. Lett. 2014,
3 3
144, 1159−1163.
(10) Vom Stein, T.; Den Hartog, T.; Buendia, J.; Stoychev, S.;
Mottweiler, J.; Bolm, C.; Klankermayer, J.; Leitner, W. Ruthenium-
Catalyzed C-C Bond Cleavage in Lignin Model Substrates. Angew.
Chem., Int. Ed. 2015, 54, 5859−5863.
2
(
037−2048.
4) (a) Li, C.; Zheng, M.; Wang, A.; Zhang, T. One-Pot Catalytic
Hydrocracking of Raw Woody Biomass into Chemicals over
Supported Carbide Catalysts: Simultaneous Conversion of Cellulose,
Hemicellulose and Lignin. Energy Environ. Sci. 2012, 5, 6383−6390.
(11) (a) Jastrzebski, R.; Constant, S.; Lancefield, C. S.; Westwood,
N. J.; Weckhuysen, B. M.; Bruijnincx, P. C. A. Tandem Catalytic
Depolymerization of Lignin by Water-Tolerant Lewis Acids and
Rhodium Complexes. ChemSusChem 2016, 9, 2074−2079. (b) Lance-
field, C. S.; Teunissen, L. W.; Weckhuysen, B. M.; Bruijnincx, P. C. A.
Iridium-Catalysed Primary Alcohol Oxidation and Hydrogen
Shuttling for the Depolymerisation of Lignin. Green Chem. 2018,
(b) Kleine, T.; Buendia, J.; Bolm, C. Mechanochemical Degradation
of Lignin and Wood by Solvent-Free Grinding in A Reactive Medium.
Green Chem. 2013, 15, 160−166. (c) Shuai, L.; Amiri, M. T.;
Questell-Santiago, Y. M.; Heroguel, F.; Li, Y.; Kim, H.; Meilan, R.;
́
Chapple, C.; Ralph, J.; Luterbacher, J. S. Formaldehyde Stabilization
Facilitates Lignin Monomer Production During Biomass Depolyme-
rization. Science 2016, 354, 329−333. (d) Zhai, Y.; Li, C.; Xu, G.; Ma,
Y.; Liu, X.; Zhang, Y. Depolymerization of Lignin via A Non-Precious
Ni−Fe Alloy Catalyst Supported on Activated Carbon. Green Chem.
2
(
0, 3214−3221.
12) (a) Renders, T.; Van Den Bosch, S.; Koelewijn, S. F.; Schutyser,
W.; Sels, B. F. Lignin-First Biomass Fractionation: the Advent of
Active Stabilisation Strategies. Energy Environ. Sci. 2017, 10, 1551−
1
557. (b) Rinaldi, R. A Tandem for Lignin-First Biorefinery. Joule
017, 1, 427−428. (c) Cao, Z.; Dierks, M.; Clough, M. T.; Daltro De
2017, 19, 1895−1903. (e) Sun, Z.; Bottari, G.; Afanasenko, A.; Stuart,
2
M. C. A.; Deuss, P. J.; Fridrich, B.; Barta, K. Complete Lignocellulose
Conversion with Integrated Catalyst Recycling Yielding Valuable
Aromatics and Fuels. Nat. Catal. 2018, 1, 82−92. (f) Shao, Y.; Xia, Q.;
Dong, L.; Liu, X.; Han, X.; Parker, S. F.; Cheng, Y.; Daemen, L. L.;
Ramirez-Cuesta, A. J.; Yang, S.; Wang, Y. Selective Production of
Arenes via Direct Lignin Upgrading over A Niobium-Based Catalyst.
Nat. Commun. 2017, 8, 16104.
Castro, I. B.; Rinaldi, R. A Convergent Approach for A Deep
Converting Lignin-First Biorefinery Rendering High-Energy-Density
Drop-In Fuels. Joule 2018, 2, 1118−1133.
(
13) (a) Cheng, J.; Zhu, M.; Wang, C.; Li, J.; Jiang, X.; Wei, Y.;
Tang, W.; Xue, D.; Xiao, J. Chemoselective Dehydrogenative
Esterification of Aldehydes and Alcohols with A Dimeric Rhodium-
(II) Catalyst. Chem. Sci. 2016, 7, 4428−4434. (b) Wang, X.; Wang,
(5) (a) Rahimi, A.; Azarpira, A.; Kim, H.; Ralph, J.; Stahl, S. S.
C.; Liu, Y.; Xiao, J. Acceptorless Dehydrogenation and Aerobic
Oxidation of Alcohols with A Reusable Binuclear Rhodium(II)
Catalyst in Water. Green Chem. 2016, 18, 4605−4610. (c) Li, J.; Liu,
Y.; Tang, W.; Xue, D.; Li, C.; Xiao, J.; Wang, C. Atmosphere-
Controlled Chemoselectivity: Rhodium-Catalyzed Alkylation and
Olefination of Alkylnitriles with Alcohols. Chem. - Eur. J. 2017, 23,
Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin. J.
Am. Chem. Soc. 2013, 135, 6415−6418. (b) Nguyen, J. D.; Matsuura,
B. S.; Stephenson, C. R. J. A Photochemical Strategy for Lignin
Degradation at Room Temperature. J. Am. Chem. Soc. 2014, 136,
1218−1221. (c) Rahimi, A.; Ulbrich, A.; Coon, J. J.; Stahl, S. S.
Formic-Acid-Induced Depolymerization of Oxidized Lignin to
Aromatics. Nature 2014, 515, 249. (d) Zhu, R.; Wang, B.; Cui, M.;
Deng, J.; Li, X.; Ma, Y.; Fu, Y. Chemoselective Oxidant-Free
Dehydrogenation of Alcohols in Lignin Using Cp*Ir Catalysts. Green
Chem. 2016, 18, 2029−2036.
1
4445−14449.
14) Kishimoto, T.; Uraki, Y.; Ubukata, M. Easy Synthesis of β-O-4
Type Lignin Related Polymers. Org. Biomol. Chem. 2005, 3, 1067−
073.
15) Guo, H.; Zhang, B.; Qi, Z.; Li, C.; Ji, J.; Dai, T.; Wang, A.;
(
1
(
(
6) (a) Harms, R. G.; Markovits, I. I. E.; Drees, M.; Herrmann, H. C.
Zhang, T. Valorization of Lignin to Simple Phenolic Compounds over
Tungsten Carbide: Impact of Lignin Structure. ChemSusChem 2017,
M. W. A.; Cokoja, M.; Kuhn, F. E. Cleavage of C-O Bonds in Lignin
̈
Model Compounds Catalyzed by Methyldioxorhenium in Homoge-
neous Phase. ChemSusChem 2014, 7, 429−434. (b) Galkin, M. V.;
Samec, J. S. M. Selective Route to 2-Propenyl Aryls Directly from
Wood by A Tandem Organosolv and Palladium-Catalysed Transfer
Hydrogenolysis. ChemSusChem 2014, 7, 2154−2158. (c) Zhang, B.;
Li, C.; Dai, T.; Huber, G. W.; Wang, A.; Zhang, T. Microwave-
Assisted Fast Conversion of Lignin Model Compounds and
Organosolv Lignin over Methyltrioxorhenium in Ionic Liquids. RSC
Adv. 2015, 5, 84967−84973. (d) Galkin, M. V.; Smit, A. T.;
Subbotina, E.; Artemenko, K. A.; Bergquist, J.; Huijgen, W. J. J.;
Samec, J. S. M. Hydrogen-Free Catalytic Fractionation of Woody
Biomass. ChemSusChem 2016, 9, 3280−3287. (e) Luo, N.; Wang, M.;
Li, H.; Zhang, J.; Hou, T.; Chen, H.; Zhang, X.; Lu, J.; Wang, F.
Visible-Light-Driven Self-Hydrogen Transfer Hydrogenolysis of
Lignin Models and Extracts into Phenolic Products. ACS Catal.
10, 523−532.
2
017, 7, 4571−4580. (f) Zhang, J.-W.; Lu, G.-P.; Cai, C. Self-
Hydrogen Transfer Hydrogenolysis of β-O-4 Linkages in Lignin
4
447
ACS Catal. 2019, 9, 4441−4447