Page 5 of 7
Organic Process Research & Development
inductively coupled plasma atomic emission spectroscopy
after completion of the experiment showed that small amounts
1
2
3
4
5
6
7
8
of catalyst leaching occurs, corresponding to Pd/Bi/Te
quantities of 0.84/0.50/0.38 ppm in the final product solution
(see Supporting Information for details). In spite of the
changes to the catalyst under the reaction conditions, the data
in Figures 2 and 3 suggest that the PBT/C catalyst has
excellent prospects for utility batch and continuous process
conditions.
Sanchez, J. A.; Hutchings, G. J. Chem. Sci., 2012, 3, 20. (e) Besson,
M.; Gallezot, P.; Pinel, C. Chem. Rev., 2014, 114, 1827. (f)
Miyamura, H.; Kobayashi S. Acc. Chem. Res. 2014, 47, 1054. (g)
Pina, C. D.; Falletta, E.; Rossi, M. Oxidative Conversion of
Renewable Feedstock: Carbohydrate Oxidation. In Liquid Phase
Aerobic Oxidation Catalysis; Stahl, S. S., Alsters, P. L., Eds.; Wiley-
VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016, pp.
349.
(2) Tojo, G.; Fernández, M. Oxidation of Primary Alcohols to
Carboxylic Acids, Tojo, G., Ed.; Springer, New York, 2010.
(3) See, for example: (a) Heyns, K.; Blazejwicz, L. Tetrahedron 1960,
9, 67. (b) Maurer, P. J.; Takahata, H.; Rapoport, H. J. Am. Chem. Soc.
1984, 106, 1095.
(4) Harding; K. E.; May, L. M.; Dick, K. F. J. Org. Chem., 1975, 40,
1664. (b) Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.;
Grabowski, E. J. J.; Reider, P. J.; Tetrahedron Lett., 1998, 39, 5323.
(5) Zhao, M. M.; Li, J.; Mano, E.; Song, Z. J.; Tschaen, D. M. Org.
Synth. 2005, 81, 195.
(6) (a) Corma, A.; Garcia, H. Chem. Soc. Rev., 2008, 37, 2096. (b)
Della Pina, C.; Falletta, E.; Rossi, M. Chem. Soc Rev. 2012, 41, 350.
(7) For reviews, see: (a) Sheldon, R. A.; Arends, I. W. C. E.; ten
Brink, G.-J.; Dijksman, A. Acc. Chem. Res. 2002, 35, 774. (b) Zhan,
B.-Z.; Thompson, A. Tetrahedron 2004, 60, 2917. (c) Stahl, S. S.
Angew. Chem. Int. Ed. 2004, 43, 3400. (d) Sigman, M. S.; Jensen, D.
R. Acc. Chem. Res. 2006, 39, 221. (e) Schultz, M. J.; Sigman, M. S.
Tetrahedron 2006, 62, 8227. (f) Matsumoto, T.; Ueno, M.; Wang, N.;
Kobayashi, S. Chem. Asian J. 2008, 3, 196. (g) Parmeggiani, C.;
Cardona, F. Green Chem. 2012, 14, 547. (h) Davis, S. E.; Ide, M. S.;
Davis, R. J. Green Chem., 2013, 15, 17.
(8) For representative primary references: (a) Mallat, T.; Baiker, A.
Catal. Today, 1994, 19, 247. (b) Besson, M.; Gallezot, P. Catal.
Today, 2000, 57, 127. (c) Mori, K.; Yamaguchi, K.; Hara, T.;
Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2002, 124,
11572. (d) Ng, Y. H.; Ikeda, S.; Harada, T.; Morita, Y.; Matsumura,
M. Chem. Commun., 2008, 27, 3181. (e) Zhang, P.; Gong, Y.;
Haoran, L.; Chen, Z.; Wang, Y. Nat. Commun., 2013, 4, 1593. (f)
Rass, H. A.; Essayem, N.; Besson, M. Green Chem., 2013, 15, 2240.
(9) For discussion, see: Steinhoff, B. A.; Guzei, I. A.; Stahl S. S. J.
Am. Chem. Soc. 2004, 126, 11268.
(10) For effective examples of homogeneous catalytic methods for
this transformation, see the following: (a) Zhao, M.; Li, J.; Mano, E.;
Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. J. Org.
Chem., 1999, 64, 2564. (b) Balaraman, E.; Khaskin, E.; Leitus, G.;
Milstein, D. A. Nat. Chem. 2013, 5, 122. (c) L. Han, P. Xing, B.
Jiang, Org. Lett., 2014, 16, 3428. (d) Jiang, X.; Zhang, J.; Ma. S. J.
Am. Chem. Soc., 2016, 138, 8344. (e) Wang, X.; Wang, C.; Liu, Y.;
Xiao, J. Green Chem., 2016, 18, 4605.
(11) Diverse heterogeneous catalysts have been employed for the
oxidation of primary alcohols to carboxylic acids, see refs. 1c, 1e, 6,
8, and the following: (a) Kimura, H.; Kimura, A.; Kokubo, I.;
Wakisaka. T.; Mitsuda, Y. Appl. Catal., A, 1993, 95, 143. (b) Mallat,
T.; Bodnar, Z.; Hug, P.; Baiker, A. J. Catal., 1995, 153, 131. (c)
Besson, M.; Lahmer, F.; Gallezot, P.; Fuertes, P.; Fleche, G. J. Catal.
1995, 152, 116. (d) Lee, A. F.; Gee, J. J.; Theyers, H. J. Green Chem,
2000, 2, 279. (e) Anderson, R.; Griffin, K.; Johnston, P.; Alsters, P. L.
Adv. Synth. Catal. 2003, 345, 517. (f) Benhmid, A.; Narayana, K. V.;
Martin, A.; Lücke, B.; Pohl, M. M. Chem. Commun., 2004, 21, 2416.
(g) Fan, A.; Jaenicke, S.; Chuah, G. K.; Biomol. Chem., 2011, 9,
7720. (h) Rass, H. A.; Essayem, N.; Besson, M. Green Chem., 2013,
15, 2240. (i) Zhou, C.; Gou, Z.; Dai, Y.; Jia, X.; Yu, H.; Yang, Y.
Appl. Catal., B, 2016, 181, 118.
9
Summary and Conclusion
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The results described herein show that a heterogeneous
PdBi0.35Te0.23/C (PBT/C) catalyst exhibits excellent activity
and selectivity for the aerobic oxidation of benzylic and
aliphatic primary alcohols to carboxylic acids. The catalyst
tolerates a broad range of functional groups that are commonly
encountered in agrochemicals and pharmaceuticals, and the
extended stability under continuous process conditions
suggests that it could have utility in large-scale applications.
The results described herein, together with the previous
oxidative methyl esterification results, suggests that PBT/C
could emerge as one of the most practical catalysts available
for the liquid-phase aerobic oxidation of primary alcohols. In
this context, ongoing work is focused on understanding the
mechanistic basis for the synergistic Bi/Te promoter effects,
and the results of these efforts will be reported in due course.
Supporting Information Available: Experimental details,
reaction optimization, bench top reaction conditions, HMF
reaction optimization, substrate characterization. This material
is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
*E-mail: stahl@chem.wisc.edu
ACKNOWLEDGMENT
The authors thank Drs. Edward Calverley, Andre Argenton, Anna
Davis, and William J. Kruper (Dow Chemical) for useful
discussion and to Dow Chemical for financial support. The
authors would like to acknowledge the assistance provided by
Nicole Thomas in purification of 2,5-furandicarboxylic acid
(FDCA). The authors would like to acknowledge the assistance
provided by Dr. Alexander Kvit and Sarah Specht with assistance
in provided during acquisition of Transmission Electron
Microscopy images. Dr. Sourav Biswas in validation of
experimental robustness. Instrumentation was partially funded by
the NSF (CHE-1048642-NMR spectrometers and CHE-9304546-
mass spectrometers).
REFERENCES
(1) For representative reviews, see: (a) Sheldon, R. Catal. Today
1994, 19, 215. (b) Sheldon, R. Catal. Today 2000, 57, 157. (c) Mallat,
T.; Baiker, A. Chem. Rev. 2004 104, 3037. (d) Dimitratos, N.; Lopez-
(12) Each of the studies cited in ref. 11 utilize main-group promoters
in noble-metal catalyzed alcohol oxidation.
5
ACS Paragon Plus Environment