F
T. Osako et al.
Letter
Synlett
Funding Information
Fukuyama, T. Chem. Lett. 2014, 43, 1456. (f) Mallia, C. J.; Walter,
G. C.; Baxendale, I. R. Beilstein J. Org. Chem. 2016, 12, 1503.
(g) Moore, J. S.; Smith, C. D.; Jensen, K. F. React. Chem. Eng. 2016,
1, 272.
This work was supported by the JST-ACCEL program (JPMJAC401). We
are also grateful for funding from the JSPS KAKENHI [Grant-in-Aid for
Challenging Exploratory Research (No. 26620090) and for Scientific
(9) For typical examples of flow carbonylations using heteroge-
neous catalysts, see: (a) Miller, P. W.; Long, N. J.; de Mello, A. J.;
Vilar, R.; Audrain, H.; Bender, D.; Passchier, J.; Gee, A. Angew.
Chem. Int. Ed. 2007, 46, 2875. (b) Csajágo, C.; Borcsek, B.; Niesz,
K.; Kovács, I.; Székelyhidi, Z.; Bajkó, Z.; Ürge, L.; Darvas, F. Org.
Lett. 2008, 10, 1589. (c) Balogh, J.; Kuik, Á.; Ürge, L.; Darvas, F.;
Bakos, J.; Skoda-Földes, R. J. Mol. Catal. A: Chem. 2009, 302, 76.
(10) Uozumi, Y.; Watanabe, T. J. Org. Chem. 1999, 64, 6921.
(11) PS–PEG-Supported Diphenylphosphine 3
Research (C) (No. 16K05876)].
J
a
p
a
n
S
c
i
e
n
c
e
a
n
d
T
e
c
h
n
o
l
o
g
y
A
g
e
n
c
y
(J
P
M
J
A
C
4
0
1)J
a
p
a
n
S
o
c
i
ety
f
orth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(2
6
6
2
0
0
9
0)J
a
p
a
n
S
o
c
i
etyforth
e
Pro
m
oti
o
n
of
S
c
i
e
n
c
e
(1
6
K
0
5
8
7
6)
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
Ph2P (1) (469 mg, 2.5 mmol) was added to degassed anhyd THF
(20 mL) under N2, and the solution was cooled to –78 °C. A 1.6
M solution of n-BuLi in hexane (1.6 mL, 2.5 mmol) was added
dropwise, and the mixture was stirred for 1 h at –78 °C. The
resulting mixture was added to a suspension of bromo-func-
tionalized PS–PEG resin 2 (TentaGel S Br purchased from Rapp
Polymere; average diameter 0.90 m; Br content: 0.32 mmol/g;
3.1 g, 1.0 mmol) in THF (30 mL) at –78 °C. The resulting mixture
was warmed to rt and shaken for 3 h. The solvent was removed
by filtration and the solid was washed sequentially with H2O
(3 × 5 mL) and CH2Cl2 (3 × 5 mL) under an inert atmosphere,
then dried under vacuum to give the PS–PEG-supported
References and Notes
(1) (a) Frost, C. G.; Mutton, L. Green Chem. 2010, 12, 1687.
(b) Newman, S. G.; Jensen, K. F. Green Chem. 2013, 15, 1456.
(c) Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42,
8849. (d) Yoshida, J.; Takahashi, Y.; Nagaki, A. Chem. Commun.
2013, 49, 9896. (e) Vaccaro, L.; Lanari, D.; Marrocchi, A.;
Strappaveccia, G. Green Chem. 2014, 16, 3680. (f) Gutmann, B.;
Cantillo, D.; Kappe, C. O. Angew. Chem. Int. Ed. 2015, 54, 6688.
(g) Munirathinam, R.; Huskens, J.; Verboom, W. Adv. Synth.
Catal. 2015, 357, 1093. (h) Brzozowski, M.; O’Brien, M.; Ley, S.
V.; Polyzos, A. Acc. Chem. Rev. 2015, 48, 349. (i) Kobayashi, S.
Chem. Asian J. 2016, 11, 425. (j) Plutschack, M. B.; Pieber, B.;
Gillmore, K.; Seeberger, P. H. Chem. Rev. 2017, 117, 11796.
(k) Akwi, F. M.; Watts, P. Chem. Commun. 2018, 54, 13894.
(l) Masuda, K.; Ichitsuka, T.; Koumura, N.; Sato, K.; Kobayashi, S.
Tetrahedron 2018, 74, 1705.
(2) Mallia, C. J.; Baxendale, I. R. Org. Process Res. Dev. 2016, 20, 327.
(3) (a) Osako, T.; Torii, K.; Uozumi, Y. RSC Adv. 2015, 5, 2647.
(b) Osako, T.; Torii, K.; Tazawa, A.; Uozumi, Y. RSC Adv. 2015, 5,
45760. (c) Osako, T.; Torii, K.; Hirata, S.; Uozumi, Y. ACS Catal.
2017, 7, 7371.
(4) (a) Barnard, C. F. J. Organometallics 2008, 27, 5402.
(b) Brennführer, A.; Neumann, H.; Beller, M. Angew. Chem. Int.
Ed. 2009, 48, 4114. (c) Wu, X.-F.; Neumann, H.; Beller, M. Chem.
Soc. Rev. 2011, 40, 4986. (d) Gadge, S. T.; Bhanage, B. M. RSC Adv.
2014, 4, 10367. (e) Bai, Y.; Davis, D. C.; Dai, M. J. Org. Chem.
2017, 82, 2319.
(5) Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry, 4th ed;
Wiley-VCH: Weinheim, 2012, 127.
(6) Lewis, R. J. Sr Sax’s Dangerous Properties of Industrial Materials,
11th ed; Wiley-Interscience: New Jersey, 2004, 708.
(7) Fukuyama, T.; Totoki, T.; Ryu, I. Green Chem. 2014, 16, 2042.
(8) For typical examples of flow carbonylations using homoge-
neous catalysts, see: (a) Glasnov, T. N.; Findenig, S.; Kappe, C. O.
Chem. Eur. J. 2009, 15, 1001. (b) Kelly, C. B.; Lee, C. X.;
Mercadante, M. A.; Leadbeater, N. E. Org. Process Res. Dev. 2011,
15, 717. (c) Gong, X.; Miller, P. W.; Gee, A. D.; Long, N. J.; de
Mello, A. J.; Vilar, R. Chem. Eur. J. 2012, 18, 2768. (d) Gross, U.;
Koos, P.; O’Brien, M.; Polyzos, A.; Ley, S. V. Eur. J. Org. Chem.
2014, 6418. (e) Akinaga, H.; Masaoka, N.; Takagi, K.; Ryu, I.;
diphenylphosphine ligand 3.31
CDCl3): = –14.4.
P SR-MAS NMR (162 MHz,
(12) PS–PEG-Supported Palladium–Diphenylphosphine Complex 4
The PS–PEG-supported diphenylphosphine ligand 3 (2.0 g) was
treated with allylpalladium(II) chloride dimer (117 mg, 0.32
mmol) in THF (20 mL) at rt for 2 h under N2. The resulting poly-
meric material was collected by filtration, washed with THF
(3 × 5 mL), and dried under vacuum to afford pale-yellow
polymer beads.31P SR-MAS NMR (162 MHz, CDCl3): = 14.8. ICP
analysis showed the presence of 0.168 mmol/g of Pd.
(13) Flow Hydroxycarbonylation of Iodobenzene (5a); Typical
Procedure
A 25 mM solution of iodobenzene (5a) and K2CO3 (2 equiv) in
H2O/CH3CN (2:1) was pumped at a flow rate of 1.0 mL/min
(contact time: 58 s) through a Phoenix flow reactor system
equipped with two cartridges of 4 (total 500 mg; 0.084 mmol
Pd). Flow hydroxycarbonylation with CO gas introduced from a
gas module (10 mL/min) was conducted at 100 °C and a system
pressure of 5 bar. The resulting solution was collected for 50
min (50 mL) and the solvent was removed by evaporation. 2 N
aq HCl (10 mL) was added and the resulting solid was collected
by filtration, washed with H2O (3 × 10 mL), and dried under
vacuum to give benzoic acid (9a) as a white solid without any
further purification.Yield: 125 mg (82%); mp 122 °C; 1H NMR
(400 MHz, DMSO-d6): = 12.96 (br s, 1 H, COOH), 7.93 (d, J = 7.2
Hz, 2 H, PhH-2 and PhH-6), 7.62 (t, J = 7.2 Hz, 1 H, PhH-4), 7.49 (t, J =
7.2 Hz, 2 H, PhH-3 and PhH-5); 13C NMR (101 MHz, DMSO-d6):
= 167.32 (COOH), 132.87 (Ph), 130.76 (Ph), 129.26 (Ph),
128.57 (Ph); ESI-TOF-MS (neg.): m/z = 121 [M – H]–.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–F