ACS Catalysis
Letter
(9) McClain, J. M.; Nicholas, K. M. ACS Catal. 2014, 4, 2109−2112.
(10) Boucher-Jacobs, C.; Nicholas, K. M. Organometallics 2015, 34,
1985−1990.
intermediates, to enhance catalytic activities, and to utilize these
reagent/catalyst pairs for the practical conversion of renewable
polyols into value-added products.
(11) (a) Herrmann, W. A.; Marz, D.; Herdtweck, E.; Schaefer, A.;
Wagner, W.; Kneuper, H. Angew. Chem. 1987, 99, 462−4. (b) Gable,
K. P.; Phan, T. N. J. Am. Chem. Soc. 1994, 116, 833−839. (c) Gable, K.
P.; Juliette, J. J. J. J. Am. Chem. Soc. 1996, 118, 2625−2633. (d) Gable,
K. P.; Zhuravlev, F. A. J. Am. Chem. Soc. 2002, 124, 3970−3979.
(12) (a) Bi, S.; Wang, J.; Liu, L.; Li, P.; Lin, Z. Organometallics 2012,
31, 6139−6147. (b) Liu, P.; Nicholas, K. M. Organometallics 2013, 32,
1821−1831. (c) Liu, S.; Senocak, A.; Smeltz, J. L.; Yang, L.;
Wegenhart, B.; Yi, J.; Kenttamaa, H. I.; Ison, E. A.; Abu-Omar, M.
M. Organometallics 2013, 32, 3210−3219. (d) Dethlefsen, J. R.;
Fristrup, P. ChemCatChem 2015, 7, 1184−1196.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures, representative gas chromato-
grams, and spectroscopic data for the products (PDF)
AUTHOR INFORMATION
Corresponding Author
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
■
(13) Chapman, G., Jr.; Nicholas, K. M. Chem. Commun. 2013, 49,
8199−8201.
(14) Geary, L. M.; Chen, T.-Y.; Montgomery, T. P.; Krische, M. J. J.
Am. Chem. Soc. 2014, 136, 5920−5922.
(15) Chapman, G., Jr.; Nicholas, K. M. (University of Oklahoma,
Norman, OK). Epoxide deoxygenation to olefins is promoted by PPh3-
1. Unpublished work, 2014.
(16) (a) Dethlefsen, J. R.; Lupp, D.; Teshome, A.; Nielsen, L. B.;
Fristrup, P. ACS Catal. 2015, 5, 3638−3642. (b) Dethlefsen, R.; Lupp,
D.; Oh, B.-Y.; Fristrup, P. ChemSusChem 2014, 7, 425−428.
(17) Giacomelli, A.; Floriani, C.; Duarte, A. O. D.; Chiesi-Villa, A.;
Guastini, C. Inorg. Chem. 1982, 21, 3310−3316.
(18) Nikolakis, V. A.; Exarchou, V.; Jakusch, T.; Woolins, J. D.;
Slawin, A. M. Z.; Kiss, T.; Kabanos, T. A. Dalton Trans. 2010, 39,
9032−9038.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We are grateful for the support provided by the U.S.
Department of Energy (No. DE-11ER16276).
■
(19) (a) Plass, W.; Yozgatli, H.-P. Z. Anorg. Allg. Chem. 2003, 629,
65−70. (b) Hosseini-Monfared, H.; Farrokhi, A.; Alavi, S.; Mayer, P.
Transition Met. Chem. 2013, 38, 267−273. (c) Plass, W.; Pohlmann,
A.; Yozgatli, H.-P. J. Inorg. Biochem. 2000, 80, 181−183.
(20) In some runs, minor unidentified long retention time products
were detected by GC. The formation of undetected polymeric species
from styrene could also contribute to the discrepancy between the
conversion and styrene yield.
REFERENCES
■
(1) (a) Brandner, A.; Claus, P. Biomass Conversion to Chemicals. In
Chemical Energy Storage; Schloegl, R., Ed.; DeGruyter: Berlin, 2013; pp
87−108. (b) Wang, Y.; Song, H.; Peng, L.; Zhang, Q.; Yao, S.
Biotechnol. Biotechnol. Equip. 2014, 28, 981−988. (c) Bozell, J. J.; Patel,
M. K. In Renewables for the Production of Chemicals and Materials; ACS
Symposium Series 921; American Chemical Society: Washington, DC,
2006; Chapter 1. (d) Chheda, J. N.; Huber, G. W.; Dumesic, J. A.
Angew. Chem., Int. Ed. 2007, 46, 7164−7183. (e) Mehdi, H.; Tuba, R.;
Mika, L. T.; Bodor, A.; Torkos, K.; Horvath, I. T. In Renewable
Resources and Renewable Energy; Graziani, M., Fornasiero, P., Eds.;
CRC Press: Boca Raton, FL, 2007; pp 55−60. (f) van Haveren, J.;
Scott, E. L.; Sanders, J. Bulk chemicals from biomass. Biofuels, Bioprod.
Biorefin. 2008, 2, 41−57.
(2) (a) Dutta, S. ChemSusChem 2012, 5, 2125−2127. (b) Zacher, A.
H.; Olarte, M. V.; Santosa, D. M.; Elliott, D. C.; Jones, S. B. Green
Chem. 2014, 16, 491−515. (c) Bu, Q.; Lei, H.; Zacher, A. H.; Wang,
L.; Ren, S.; Liang, J.; Wei, Y.; Liu, Y.; Tang, J.; Zhang, Q.; Ruan, R.
Bioresour. Technol. 2012, 124, 470−477. (d) Ruppert, A. M.; Weinberg,
K.; Palkovits, R. Angew. Chem., Int. Ed. 2012, 51, 2564−2601.
(e) Deng, W.; Tan, X.; Fang, W.; Zhang, Q.; Wang, Y. Catal. Lett.
2009, 133. (f) Yan, N.; Zhao, C.; Luo, C.; Dyson, P. J.; Liu, H.; Kou, Y.
J. Am. Chem. Soc. 2006, 128, 8714−8715.
(21) Evans, D. F. J. Chem. Soc. 1959, 2003−5.
(22) Metal carbonyls made by metal oxide/CO reactions: (a) March-
ionna, M.; Lami, M.; Raspolli Galletti, A. M.; Braca, G. Gazz. Chim.
Ital. 1993, 123, 107−109. (b) Hagen, A. P.; Miller, T. S.; Terrell, D. L.;
Hutchinson, B.; Hance, R. L. Inorg. Chem. 1978, 17, 1369−70. MOx−
CO adducts: (c) La Pierre, H. S.; Arnold, J.; Bergman, R. G.; Toste, F.
D. Inorg. Chem. 2012, 51, 13334−13344. V2O5 catalyzes CO
oxidation: (d) Freund, H.-J.; Meijer, G.; Scheffler, M.; Schlogl, R.;
Wolf, M. Angew. Chem., Int. Ed. 2011, 50, 10064−10094. (e) Zhu, G.-
M.; Qu, Z.-B.; Zhuang, G.-l.; Xie, Q.; Meng, Q.-Q.; Wang, J.-G. J. Phys.
Chem. C 2011, 115, 14806−14811.
(23) Estimated pKa values for L = salhyd: phenolate-O− (10), sp2-N
−
(20), amide-O− (15) vs L= dipic: CO2 (5), pyr (5); from evans.
(24) (a) Crans, D. C.; Trujillo, A. M.; Pharazyn, P. S.; Cohen, M. D.
Coord. Chem. Rev. 2011, 255, 2178−2192. (b) Crans, D. C.; Felty, R.
A.; Chen, H.; Eckert, H.; Das, N. Inorg. Chem. 1994, 33, 2427−2438.
(c) Hanson, S. K.; Baker, R. T.; Gordon, J. C.; Scott, B. L.; Sutton, A.
D.; Thorn, D. L. J. Am. Chem. Soc. 2009, 131, 428−429.
(3) Boucher-Jacobs, C.; Nicholas, K. M. In Selective Catalysis for
Renewable Feedstocks and Chemicals; Nicholas, K. M., Ed.; Topics in
Current Chemistry; Springer: Heidelberg, Germany, 2014; pp 163−
184.
(4) Cook, G. K.; Andrews, M. A. J. Am. Chem. Soc. 1996, 118, 9448−
9449.
(5) Ziegler, J. E.; Zdilla, M. J.; Evans, A. J.; Abu-Omar, M. M. Inorg.
Chem. 2009, 48, 9998−10000.
(6) (a) Vkuturi, S.; Chapman, G.; Ahmad, I.; Nicholas, K. M. Inorg.
Chem. 2010, 49, 4744−4746. (b) Ahmad, I.; Chapman, G.; Nicholas,
K. M. Organometallics 2011, 30, 2810−2818.
(7) (a) Arceo, E.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc.
2010, 132, 11408−11409. (b) Shiramizu, M.; Toste, F. D. Angew.
Chem., Int. Ed. 2012, 51, 8082−8086. (c) Shiramizu, M.; Toste, F. D.
Angew. Chem., Int. Ed. 2013, 52, 12905−12909.
(8) Boucher-Jacobs, C.; Nicholas, K. M. ChemSusChem 2013, 6,
597−599.
1904
ACS Catal. 2016, 6, 1901−1904