Full Paper
doi.org/10.1002/chem.202101078
Chemistry—A European Journal
Acknowledgements
The EPSRC Centre for Doctoral Training in Catalysis (EP/
L016443/1) is thanked for funding (CRW, DJD). The authors
would like to thank the MC2 facility at the University of Bath, in
particular Dr. Martin Levere and Dr. Rémi Castaing, for
assistance. Many thanks are extended to Dr. Thom McGuire and
Dr. Antoine Buchard for helpful discussions and to Dr. Danila
Gasperini for preparation of the Fe(I) species. Dr. Adam Squires
is thanked for WAXD analysis.
Scheme 4. [2+2] cycloaddition of phenylallene.
by insertion of monomer into the FeÀ C bond (III), which is the
key chain propagation process. Given the high degree of
polymerization (DP) values across all substrates and condi-
tions, it is likely that only a relative small amount of metal Conflict of Interest
centers are active species. In situ wide sweep NMR spectro-
scopy confirms that a significant amount of pre-catalyst
remains unreacted even after full conversion of the substrate.
Preparation of an analogous Fe(I)-η6-arene species, [Fe](I),
leads to similar reactivity without a hydride source present
(90% conversion to P1; 6:1 ratio P12,3 :P11,2, Mn =190 kDa, Ð=
1.51) supporting our hypothesis.
The authors declare no conflict of interest.
Keywords: allenes · cycloaddition · homogeneous catalysis ·
iron · polymers
Interestingly, when the polymerization is performed at
80 C, an unusual side-reaction is observed (Scheme 4). 1,3-
[1] a) S. R. Sandler, W. Karo, ALLENES, Academic Press 1992; b) D. J. Pasto,
Tetrahedron 1984, 40, 2805–2827.
[2] a) S. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074–3112; Angew. Chem.
2012, 124, 3128–3167; b) S. Ma, Acc. Chem. Res. 2009, 42, 1679–1688;
c) M. A. Tius, Chem. Soc. Rev. 2014, 43, 2979–3002.
[3] a) R. Zimmer, H.-U. Reissig, Chem. Soc. Rev. 2014, 43, 2888–2903; b) R.
Zimmer, C. U. Dinesh, E. Nandanan, F. Ahmed Khan, Chem. Rev. 2000,
100, 3067–3126; c) L. Alessandro Perego, R. Blieck, A. Groué, F. Monnier,
M. Taillefer, I. Ciofini, L. Grimaud, ACS Catal. 2017, 7, 4253–4264; d) Y.
Nagashima, K. Sasaki, T. Suto, T. Sato, N. Chida, Chem. Asian J. 2018, 13,
1024–1028; e) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47,
953–965.
°
di((Z/E)-benzylidene)cyclobutane can also be formed in mod-
est yield in a 2:1 ratio of cis:trans. The product is readily
isolable from the polymer residue (See Supporting Informa-
tion). Attempts to increase the yield of this cyclobutane
product using controlled, dilute addition using a syringe
pump (e.g. using 1 in 670 μL C6H6 added at a rate of 20 μL/
min to a flask containing 5 mol% H3N·BH3 and 1 mol% [Fe] in
6 mL C6H6) failed to give a substantial increase in yield, and
polymerization still dominates. Undertaking this [2+2] cyclo-
[4] P. Rivera-Fuentes, F. Diederich, Angew. Chem. Int. Ed. 2012, 51, 2818–
2828; Angew. Chem. 2012, 124, 2872–2882.
2
addition with Me2DN·BH3 or Me2HN·BD3 does not lead to H
[5] H. Greenfield, I. Wender, J. H. Wotiz, J. Org. Chem. 1956, 21, 875–878.
[6] K. Osakada, D. Takeuchi, Polymer Synthesis, Springer Berlin Heidelberg,
Berlin, Heidelberg 2004, pp. 137–194.
[7] Y. Gao, D. Zhou, J. Lyu, S. A, Q. Xu, B. Newland, K. Matyjaszewski, H. Tai,
W. Wang, Nat. Chem. Rev. 2020, 4, 194–212.
[8] Y. Bao, G. Shen, X. Liu, Y. Li, J. Polym. Sci. Part A 2013, 51, 2959–2969.
[9] J. Leland, J. Boucher, K. Anderson, J. Polym. Sci. Polym. Chem. Ed. 1977,
15, 2785–2788.
[10] T. Yokozawa, N. Ito, T. Endo, Chem. Lett. 1988, 17, 1955–1958.
[11] M. Ahmed, T. Arnauld, A. G. M. Barrett, D. Christopher Braddock, K. Flack,
P. A. Procopiou, Org. Lett. 2000, 2, 551–553.
incorporation in the product. These cyclobutane structures are
unusual, as the thermal dimerization and [2+2] cycloadditions
of allenes generally produce 1,2-substituted rings as the major
product.[26] Furthermore these are challenging synthetic tar-
gets: to the best of our knowledge the only previous synthetic
route to these molecules was reported by Dixneuf, which used
°
a pinacolborane-allene and Ru pre-catalyst at 100 C to
generate the 1,3-disubstituted cyclobutane product as a 1:2
[12] F. Lin, Z. Liu, T. Wang, D. Cui, Angew. Chem. Int. Ed. 2017, 56, 14653–
14657; Angew. Chem. 2017, 129, 14845–14849.
ratio of cis:trans isomers i.e. complementary to our results.[27]
[13] a) K. Takagi, I. Tomita, T. Endo, Macromolecules 1997, 30, 7386–7390;
b) A. Yamauchi, A. Shirai, K. Kawabe, T. Iwamoto, T. Wakiya, H.
Nishiyama, S. Inagi, I. Tomita, NPG Asia Mater. 2016, 8, e307–e307.
[14] K. Nakagawa, I. Tomita, Macromolecules 2007, 40, 9212–9216.
[15] a) M. Espinal-Viguri, A. K. King, J. P. Lowe, M. F. Mahon, R. L. Webster,
ACS Catal. 2016, 6, 7892–7897; b) M. Espinal-Viguri, S. E. Neale, N. T.
Coles, S. A. Macgregor, R. L. Webster, J. Am. Chem. Soc. 2019, 141, 572–
582; c) N. T. Coles, M. F. Mahon, R. L. Webster, Organometallics 2017, 36,
2262–2268.
Conclusion
In summary, by using an iron(II) pre-catalyst we can polymer-
ize phenylallene and its derivatives to form 2,3-substituted
polymers of substantial molecular weight. We have character-
ized these polymers by using a range of techniques and have
postulated a mechanism based on our studies into the nature
of the reaction. Work is ongoing to develop our polymer-
ization chemistry with 1 further, as well as investigate its
potency in other catalytic allene functionalization reactions.
[16] M. Espinal-Viguri, C. R. Woof, R. L. Webster, Chem. Eur. J. 2016, 22,
11605–11608.
[17] V. C. Gibson, E. L. Marshall, D. Navarro-Llobet, A. J. P. White, D. J.
Williams, J. Chem. Soc. Dalton Trans. 2002, 4321–4322.
[18] M.-S. Zhou, S.-P. Huang, L.-H. Weng, W.-H. Sun, D.-S. Liu, J. Organomet.
Chem. 2003, 665, 237–245.
[19] X. Tao, C. G. Daniliuc, K. Soloviova, C. A. Strassert, G. Kehr, G. Erker,
Chem. Commun. 2019, 55, 10166–10169.
[20] We also tentatively predict the presence of an atactic polymer. However
we cannot be confident of the relative stability of the atactic species (+
6.1 kcalmol-1) beyond the seven-unit oligomer, as this would not remain
constant compared to the other species for longer chain lengths.
Chem. Eur. J. 2021, 27, 1–7
5
© 2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH
��
These are not the final page numbers!