N. Mizuno and K. Yamaguchi
FULL PAPER
at 356 K for 1 h with azeotropic removal of water formed under an O2 flow
(ca. 1 mLminÀ1) and benzaldehyde was produced in >99% GC yield.
After the reaction, the catalyst was separated by filtration (or centrifuga-
tion) and was further washed with acetone. The filtrate was evaporated in
vacuo, and the crude product was further purified by column chromatog-
raphy on silica gel to give pure benzaldehyde (0.10 g, 95% isolated yield).
The separated Ru/Al2O3 was washed with an aqueous solution of NaOH
(1.0m) and water (30 mL), and dried in vacuo before recycling.
J. A. Osborn, Eur. J. Inorg. Chem. 1998, 1673; i) A. Dijksman,
I. W. C. E. Arends, R. A. Sheldon, Chem. Commun. 1999, 1591;
j) P. A. Shapley, N. Zhang, J. L. Allen, D. H. Pool, H.-C. Liang, J. Am.
¬
Chem. Soc. 2000, 122, 1079; k) A. Dijksman, A. Marino-Gonzalez, A.
Mairata i Payeras, I. W. C. E. Arends, R. A. Sheldon, R. J. Am. Chem.
Soc. 2001, 123, 6826; l) A. Miyata, M. Murakami, R. Irie, T. Katsuki,
Tetrahedron Lett. 2001, 42, 7076; m) M. Hasan, M. Musawir, P. N.
Dabey, I. V. Kozhevnikov, J. Mol. Catal. A 2002, 180, 77; n) G.
Csjernyik, A. H. Ell, L. Fadini, B. Pugin, J.-E. B‰ckvall, J. Org. Chem.
2002, 67, 1657.
Synthesis of a-deuterio-p-methylbenzyl alcohol: a-Deuterio-p-methylben-
zyl alcohol was synthesized by the reduction of p-methylbenzaldehyde
usinglithium aluminum deuteride by a modification of the procedure
reported for the synthesis of deuterium-labeled toluene.[22] Thus, a solution
of p-methylbenzaldehyde (3.2 g, 26.7 mmol) in dry THF (20 mL) was
added slowly to a suspension of lithium aluminum deuteride (0.33 g,
7.9 mmol) in dry THF (20 mL) at room temperature, and then the resulting
mixture was stirred vigorously under Ar atmosphere at 333 K. After 8 h,
the mixture was cooled to 273 K and unreacted lithium aluminum
deuteride was destroyed by the addition of water (500 mL). Then, an
aqueous solution of NaOH (50 mL, 0.1m) was added slowly to the mixture.
The resultingwhite solid was removed by filtration and washed with THF,
and the filtrate was extracted with chloroform (100 mL Â 4). The combined
extract was dried with CaCl2 and evaporated to give crude a-deuterio-p-
methylbenzyl as a white powder. The crude product was recrystallized from
petroleum ether/chloroform solution (97:3) to give the purified compound
(1.4 g, 43%) as a white sticky crystal. The product was identified by
comparison of the physical and spectral data with those of the authentic
unlabelled material. The deuterium content was estimated to be >99% by
mass spectrometry and 1H NMR spectroscopy. 1H NMR (270 MHz,
[D1]chloroform, 258C, TMS): d 7.21 (d, 3J(H,H) 7.82 Hz, 2H; aromatic
H), 7.13 (d, 3J(H,H) 7.10 Hz, 2H; aromatic H), 4.54 (s, 1H, CHDO), 2.33
(s, 3H; CH3), 2.25 ppm (d, 3J(H,H) 4.80 Hz, 1H; OH); 13C NMR
(67.5 MHz, [D1]chloroform, 258C, TMS): d 137.8, 137.2 (Cpara), 129.1
(2Cmeta), 127.1 (2Cortho), 64.7 (t, 1J(C,D) 25.7 Hz; CHDOH), 21.1 ppm
[5] a) T. Nishimura, T. Onoue, K. Ohe, S. Uemura, Tetrahedron Lett. 1998,
39, 6011; b) K. P. Peterson, R. C. Larock, J. Org. Chem. 1998, 63, 3185;
c) T. Nishimura, T. Onoue, K. Ohe, S. Uemura J. Org. Chem. 1999, 64,
6750; d) G.-J. ten Brink, I. W. C. E. Arends, R. A. Sheldon, Science
2000, 287, 1636; e) T. Nishimura, Y. Maeda, N. Kakiuchi, S. Uemura, J.
Chem. Soc. Perkin Trans. 1 2000, 4301; f) D. R. Jenson, J. S. Puqsley,
M. S. Sigman, J. Am. Chem. Soc. 2001, 123, 7475; g) E. M. Ferreira,
B. M. Stoltz, J. Am. Chem. Soc. 2001, 123, 7725; h) G.-J. ten Brink,
I. W. C. E. Arends, R. A. Sheldon, Adv. Synth. Catal. 2002, 344, 355;
i) B. A. Steinhoff, S. S. Stahl, Org. Lett. 2002, 4, 4179.
¬
[6] a) I. E. Marko, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J. Urch,
¬
Science 1996, 274, 2044; b) I. E. Marko, M. Tsukazaki, P. R. Giles,
S. M. Brown, S. C. J. Urch, Angew. Chem. 1997, 109, 2297; Angew.
Chem. Int. Ed. 1997, 36, 2208; c) Y. Wang, J. L. DuBois, B. Hedman,
¬
K. O. Hodgson, T. D. P. Stack, Science 1998, 279, 537; d) I. E. Marko,
¬
A. Gautier, I. Chelle-Regnaut, P. R. Giles, M. Tsukazaki, C. J. Urch,
¬
S. M. Brown, J. Org. Chem. 1998, 63, 7576; e) I. E. Marko, P. R. Giles,
¬
M. Tsukazaki, I. Chelle-Regnaut, A. Gautier, S. M. Brown, C. J. Urch,
J. Org. Chem. 1999, 64, 2433; f) B. Betzemeier, M. Cavazzini, S. Quici,
P. Knochel, Tetrahedron Lett. 2000, 41, 4343.
[7] a) T. Iwahama, Y. Yoshino, T. Keitoku, S. Sakaguchi, Y. Ishii, J. Org.
¬
¬
Chem. 2000, 65, 6502; b) I. Fernandez, J. R. Pedro, A. L. Rosello, R.
Ruiz, I. Castro, X. Ottenwaelder, Y. Journaux, Eur. J. Org. Chem.
2001, 1235; c) V. B. Sharma, S. L. Jain, B. Sain, Tetrahedron Lett. 2003,
44, 383.
(CH3); MS (70 eV, EI): m/z (%): 124 (19) [M H], 123 (100) [M ], 121
(18), 108 (84), 106 (44), 94 (54), 93 (43), 92 (54), 91 (77), 80 (77), 78 (52), 77
(70), 65 (52); elemental analysis calcd (%) for C8H9DO (123.2, deuterium
was calculated as hydrogen): C 78.65, H 8.25; found: C 78.50, H 8.24.
[8] a) M. Kirihara, Y. Ochiai, S. Takizawa, H. Takahata, H. Nemoto,
Chem. Commun. 1999, 1387; b) Y. Maeda, N. Kakiuchi, S. Matsumura,
T. Nishimura, S. Uemura, Tetrahedron Lett. 2001, 42, 8877; c) Y.
Maeda, N. Kakiuchi, S. Matsumura, T. Nishimura, T. Kawamura, S.
Uemura, J. Org. Chem. 2002, 67, 6718.
[9] a) J. M. Thomas, R. Raja, G. Sankar, Nature 1999, 398, 227; b) A.
Corma, L. T. Nemeth, M. Renz, S. Valencia, Nature 2001, 412, 423;
c) J. T. Rhule, W. A. Neiwert, K. I. Hardcastle, B. T. Do, C. L. Hill, J.
Am. Chem. Soc. 2001, 123, 12101.
[10] For examples of heterogeneous Ru catalysts, see: a) A. Bleloch,
B. F. G. Johnson, S. V. Ley, A. J. Price, D. S. Shephard, A. W. Thomas,
Chem. Commun. 1999, 907; b) F. Vocanson, Y. P. Guo, I. L. Namy,
H. B. Kagan, Synth. Commun. 1998, 28, 2577; c) K. Kaneda, T.
Yamashita, T. Matsushita, K. Ebitani, J. Org. Chem. 1998, 63, 1750;
d) T. Matsushita, K. Ebitani, K. Kaneda, Chem. Commun. 1999, 265;
e) K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am.
Chem. Soc. 2000, 122, 7144; f) E. Choi, C. Lee, Y. Na, S. Chang, Org.
Lett. 2002, 4, 2369; g) J. Hongbing, T. Mizugaki, K. Ebitani, K.
Kaneda, Tetrahedron Lett. 2002, 43, 7179; h) J. Hongbing, K. Ebitani,
T. Mizugaki, K. Kaneda, Catal. Commun. 2002, 3, 511; i) B.-Z. Zhan,
M. A. White, T.-K. Sham, J. A. Pincock, R. J. Doucet, K. V. R. Rao,
K. N. Robertson, T. S. Cameron, J. Am. Chem. Soc. 2003, 125, 2195.
[11] For examples of heterogeneous Pd catalysts, see: a) T. Mallat, A.
Baiker, Catal. Today 1994, 19, 247; b) K. Kaneda, Y. Fujie, K. Ebitani,
Tetrahedron Lett. 1997, 38, 9023; c) T. Nishimura, N. Kakiuchi, M.
Inoue, S. Uemura, Chem. Commun. 2000, 1245; d) N. Kakiuchi, Y.
Maeda, T. Nishimura, S. Uemura, J. Org. Chem. 2001, 66, 6620; e) K.
Mori, K. Yamaguchi, T. Mizugaki, K. Ebitani, K. Kaneda, J. Am.
Chem. Soc. 2002, 124, 11573; f) Y. Uozumi, R. Nakao, Angew. Chem.
2003, 115, 204; Angew. Chem. Int. Ed. 2003, 42, 194.
Acknowledgement
This work was supported in part by the Core Research for Evolutional
Science and Technology (CREST) program of the Japan Science and
Technology Corporation (JST) and a Grant-in-Aid for Scientific Research
from the Ministry of Education, Culture, Sports, Science, and Technology
of Japan.
[1] Encyclopedia of Chemical Technology, Wiley, Canada, 1991.
[2] a) R. A. Sheldon, J. K. Kochi, Metal Catalyzed Oxidations of Organic
Compounds, Academic Press, New York, 1981; b) C. L. Hill in
Advances in Oxygenated Processes, Vol. 1, (Ed.: A. L. Baumstark),
JAI Press, London, 1988, p. 1; c) M. Hudlucky, Oxidations in Organic
Chemistry, ACS Monograph Series, American Chemical Society,
Washington DC, 1990; d) A. Madin in Comprehensive Organic
Synthesis, Vol. 7 (Eds.: B. M. Trost, I. Fleming, S. V. Ley), Pergamon
Press, Oxford, 1991, p. 251.
[3] a) B. M. Trost, Science 1991, 245, 1471; b) P. T. Anastas, J. C. Warner,
Green Chemistry: Theory and Practice, Oxford University Press,
London, 1998; c) R. A. Sheldon, Green Chem. 2000, 2, G1; d) P. T.
Anastas, L. B. Bartlett, M. M. Kirchhoff, T. C. Williamson, Catal.
Today 2000, 55, 11.
[4] a) R. Tang, S. E. Diamond, N. Neary, F. Mares, J. Chem. Soc. Chem.
Commun. 1978, 562; b) M. Matsumoto, S. Ito, J. Chem. Soc. Chem.
Commun. 1981, 907; c) C. Bilgrien, S. David, R. S. Drago, J. Am.
Chem. Soc. 1987, 109, 3786; d) J.-E. B‰ckvall, R. L. Chowdhury, U.
[12] a) K. Yamaguchi, N. Mizuno, Angew. Chem. 2002, 114, 4720; Angew.
Chem. Int. Ed. 2002, 41, 4538; b) K. Yamaguchi, N. Mizuno, Angew.
Chem. 2003, 115, 1517; Angew. Chem. Int. Ed. 2003, 42, 1479.
[13] R. A. Sheldon, M. Wallau, I. W. C. E. Arends, U. Schuchardt, Acc.
Chem. Res. 1998, 31, 485.
¬
Karlsson, J. Chem. Soc. Chem. Commun. 1991, 473; e) I. E. Marko,
¬
P. R. Giles, M. Tsukazaki, I. Chelle-Regnaut, C. J. Urch, S. M. Brown,
J. Am. Chem. Soc. 1997, 119, 12661; f) R. Lenz, S. V. Ley, J. Chem. Soc.
Perkin Trans. 1 1997, 3291; g) A. Hanyu, E. Takezaki, S. Sakaguchi, Y.
Ishii, Tetrahedron Lett. 1998, 39, 5557; h) K. S. Coleman, C. Y. Lorber,
[14] I. V. Kozhevnikov, V. E. Tarabanko, K. I. Matveev, Kinet. Katal. 1981,
22, 619.
4360
¹ 2003 Wiley-VCH VerlagGmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2003, 9, 4353 4361