Paper
RSC Advances
9
J. Hu, D. K. Shen, S. L. Wu, H. Y. Zhang and R. Xiao, Energy
Fuels, 2014, 28, 4260–4266.
1
1
1
1
0 Y. Ye, J. Fan and J. Chang, J. Anal. Appl. Pyrolysis, 2012, 94,
90–195.
1 H. Pi n´ kowska, P. Wolak and A. Złoci n´ ska, Chem. Eng. J.,
012, 187, 410–414.
2 J. Hu, D. K. Shen, S. L. Wu, H. Y. Zhang and R. Xiao, J. Anal.
Appl. Pyrolysis, 2014, 106, 118–124.
3 Q. Song, F. Wang, J. Cai, Y. Wang, J. Zhang, W. Yu and J. Xu,
Energy Environ. Sci., 2013, 6, 994–1007, DOI: 10.1039/
c2ee23741e.
1
2
Fig. 5 Possible reaction pathway for the cleavage of benzyl phenyl
ether in presence of ZrP and Pd/C.
14 A. Toledano, L. Serrano, J. Labidi, A. Pineda, A. M. Balu and
R. Luque, ChemCatChem, 2013, 5, 977–985.
In the presence of ZrP–Pd/C mixture catalysts, both catalysts 15 A. Toledano, L. Serrano, A. Pineda, A. A. Romero, R. Luque
contribute to the depolymerization. While the benzyl alcohol
and J. Labidi, Appl. Catal., B, 2014, 145, 43–55.
formed by the catalysis ZrP will be catalyzed again by Pd/C 16 H. G. Kim and Y. Park, Ind. Eng. Chem. Res., 2013, 52, 10059–
forming alkylation products.
10062.
1
1
1
2
2
2
2
2
2
2
2
2
2
7 J. Pan, J. Fu, S. Deng and X. Lu, Energy Fuels, 2014, 28, 1380–
1386.
4
. Conclusion
8 C. Dong, C. Feng, Q. Liu, D. Shen and R. Xiao, Bioresour.
Technol., 2014, 162, 136–141.
9 V. Roberts, S. Fendt, A. A. Lemonidou, X. Li and J. A. Lercher,
Appl. Catal., B, 2010, 95, 71–77.
The yield of phenol increased effectively in the presence of ZrP or
SBA-15 doped with metal catalyst (Pd/C or Ru/C), and 40.55%
phenol was produced over ZrP–Pd/C. As the main primary prod-
ucts, phenol was stable, while benzyl alcohol reacted easily
forming oligomers over Pd. It is proposed that under the catalysis
of ZrP–Pd/C hybrid catalyst, benzyl phenyl ether will rstly be
decomposed into phenol and benzyl alcohol, and benzyl alcohol
will then undergo repolymerization forming polymers.
0 J. He, C. Zhao and J. A. Lercher, J. Am. Chem. Soc., 2012, 134,
2
0768–20775.
1 J. He, L. Lu, C. Zhao, D. Mei and J. A. Lercher, J. Catal., 2014,
11, 41–51.
3
2 J. Hu, D. K. Shen, R. Xiao, S. L. Wu and H. Y. Zhang, Energy
Fuels, 2013, 27, 285–293.
3 H. W. Park, S. Park, D. R. Park, J. H. Choi and I. K. Song, J.
Ind. Eng. Chem., 2011, 17, 736–741.
4 Y. Liao, Q. Liu, T. Wang, J. Long, L. Ma and Q. Zhang, Green
Chem., 2014, 16, 3305–3312.
5 L. Cheng, X. Guo, C. Song, G. Yu, Y. Cui, N. Xue, L. Peng,
X. Guo and W. Ding, RSC Adv., 2013, 3, 23228–23235.
6 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson,
B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548–552.
7 M. l. Besson, P. Gallezot and C. Pinel, Chem. Rev., 2013, 114,
Acknowledgements
The authors greatly acknowledge the funding support from the
projects supported by National Basic Research Program of
China (973 Program) (Grant no. 2012CB215306 and
2011CB201505) and National Natural Science Foundation of
China (Grant no. 51476034, 51476035), the Major Research Plan
of the National Natural Science Foundation of China (Grant no.
91334205), and the Scientic Research Foundation of the
1
827–1870.
8 Y. Ye, Y. Zhang, J. Fan and J. Chang, Bioresour. Technol.,
012, 118, 648–651.
9 Y. T. Kim, J. A. Dumesic and G. W. Huber, J. Catal., 2013, 304,
2–85.
30 J. C. del R ´ı o, A. Guti ´e rrez, M. Hernando, P. Land ´ı n, J. Romero
Graduate School of Southeast University (YBJJ1325).
2
References
7
1
2
P. McKendry, Bioresour. Technol., 2002, 83, 37–46.
J. Zakzeski, P. C. Bruijnincx, A. L. Jongerius and
B. M. Weckhuysen, Chem. Rev., 2010, 110, 3552.
Q. Song, J. Cai, J. Zhang, W. Yu, F. Wang and J. Xu, Chin. J.
Catal., 2013, 34, 651–658.
C. Xu, R. A. D. Arancon, J. Labidi and R. Luque, Chem. Soc.
Rev., 2014, 43, 7485–7500.
S. Kang, X. Li, J. Fan and J. Chang, Renewable Sustainable
Energy Rev., 2013, 27, 546–558.
´
´
and A. T. Martınez, J. Anal. Appl. Pyrolysis, 2005, 74, 110–115.
31 G. Jiang, D. J. Nowakowski and A. V. Bridgwater, Energy
Fuels, 2010, 24, 4470–4475.
32 A. A. Gurinov, D. Mauder, D. Akcakayiran, G. H. Findenegg and
I. G. Shenderovich, ChemPhysChem, 2012, 13, 2282–2285.
33 N. Li, G. A. Tompsett, T. Zhang, J. Shi, C. E. Wyman and
G. W. Huber, Green Chem., 2011, 13, 91–101.
34 A. Sanna, T. P. Vispute and G. W. Huber, Appl. Catal., B,
2015, 165, 446–456.
35 C. Yokoyama, K. Nishi and S. Takahashi, Sekiyu Gakkaishi,
1997, 40, 465–473.
3
4
5
6
7
8
F. Behrendt, Y. Neubauer, M. Oevermann, B. Wilmes and
N. Zobel, Chem. Eng. Technol., 2008, 31, 667–677.
M. P. Pandey and C. S. Kim, Chem. Eng. Technol., 2011, 34,
29–41.
36 M. Siskin, G. Brons, S. N. Vaughn, A. R. Katritzky and
M. Balasubramanian, Energy Fuels, 1990, 4, 488–492.
F. Jin and H. Enomoto, Energy Environ. Sci., 2011, 4, 382.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 43972–43977 | 43977