B. Tang et al. / Catalysis Communications 21 (2012) 68–71
71
Table 4
exerted notable impacts on the epoxidation reaction. Recycling studies
showed that Co2+-exchanged ZSM-5 and Beta zeolites could be repeat-
edly used as excellent heterogeneous catalysts for the epoxidation of
alkenes.
Effect of different initiators on the epoxidation of styrene and α-pinene over Co-ZSM-5
and Co-Beta.
Selectivity (%)
Catalyst
Alkene
Initiator Conv. (mol%) Epoxide
A
B
Others
Acknowledgments
Co-ZSM-5 Styrene
Co-Beta
Co-ZSM-5
Co-Beta
TBHPa
88.4
92.4
77.2
75.8
41.2
42.4
92.8
90.6
67.7
64.3
66.8
63.0
90.1
91.7
84.4
84.8
76.1
76.1
86.1
88.3
68.4
79.9
75.3
76.9
5.4
3.4
7.9
10.1
17.2
19.5
3.9
4.5
4.9
4.2
3.2
5.0
4.4
8.3
7.7
0
0
NHPIb
3.5
1.9
1.7
0
1.7
0.7
The authors acknowledge the funding supports provided by the
National Natural Science Foundation of China (Nos. 20901023,
21173073), by the 2007 excellent mid-youth innovative project of
HPED of China (no. T200701), and by the key project of HPSTD of
China (no. 2008CAD030). Dr. D. Zhou thanks the financial support
by Chen Guang Scheme of Wuhan City (no. 201050231087).
c
Co-ZSM-5
Co-Beta
H2O2
Co-ZSM-5 α-Pinene TBHPa
Co-Beta
Co-ZSM-5
Co-Beta
Co-ZSM-5
Co-Beta
3.3
NHPIb
7.0 13.9 10.7
5.9 12.4
4.6 13.9
4.3 12.7
1.8
6.2
6.1
c
H2O2
Appendix A. Supplementary data
a
Alkene, 3 mmol; DMF, 10 g; Catalyst, 0.1 g; Initiator (TBHP), 0.3 mmol; Time, 5 h;
Temperature, 363 K; Flow rate of air, 40 ml/min.
Supplementary data to this article can be found online at doi:10.
b
Adding 0.3 mmol NHPI instead of TBHP.
c
Adding 0.3 mmol H2O2 instead of TBHP.
References
[1] Q.-H. Xia, H.-Q. Ge, C.-P. Ye, Z.-M. Liu, K.-X. Su, Chemical Reviews 105 (2005)
1603.
[2] T. Punniyamurthy, S. Velusamy, J. Iqbal, Chemical Reviews 105 (2005) 2329.
[3] R. Kumar, A. Bhaumik, Microporous and Mesoporous Materials 21 (1998) 497.
[4] Q.-H. Xia, X. Chen, T. Tatsumi, Journal of Molecular Catalysis A: Chemical 176
(2001) 179.
[5] B. Qi, X.-H. Lu, D. Zhou, Q.-H. Xia, Z.-R. Tang, S.-Y. Fang, T. Pang, Y.-L. Dong, Journal
of Molecular Catalysis A: Chemical 322 (2010) 73.
[6] J. Jiang, K. Ma, Y.-F. Zheng, S.-L. Cai, R. Li, J.-T. Ma, Applied Clay Science 45 (2009)
117.
[7] B. Tyagi, B. Shaik, H.C. Bajaj, Applied Catalysis A 383 (2010) 161.
[8] Y. Chang, Y.-R. Lv, F. Lu, F. Zha, Z.-Q. Lei, Journal of Molecular Catalysis A: Chemical
320 (2010) 56.
[9] H.-J. Zhan, Q.-H. Xia, X.-H. Lu, Q. Zhang, H.-X. Yuan, K.-X. Su, X.-T. Ma, Catalysis
Communications 8 (2007) 1472.
[10] R.A. Sheldon, Studies in Surface Science and Catalysis 110 (1997) 151.
[11] C. Shuster, E. Mollmann, A. Tompos, W.F. Hoelderich, Catalysis Letters 74 (2001)
69.
[12] X. Yuan, F. Li, L. Wang, H.-A. Luo, Latin American Applied Research 37 (2007) 151.
[13] P.J. Smeets, J.S. Woertink, B.F. Sels, E.I. Solomon, R.A. Shoonheydt, Inorganic
Chemistry 49 (2010) 3573.
100
90
80
70
60
50
40
30
20
10
100
90
80
70
60
50
40
30
20
10
0
a.conv.
a.sele
b.conv.
b.sele.
[14] J. Bu, Z.M.A. Judeh, C.B. Ching, S. Kawi, Catalysis Letters 85 (2003) 183.
[15] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angewandte Chemie, International
Edition 43 (2004) 1546.
[16] Y. Liu, K. Murata, M. Inaba, Chemical Communications (2004) 582.
[17] B. Rhodes, S. Rowling, P. Tidswell, S. Woodward, S.M. Brown, Journal of Molecular
Catalysis A: Chemical 116 (1997) 375.
0
1
2
3
4
5
6
7
Number of recycle
[18] T. Punniyamurthy, J. Iqbal, Tetrahedron Letters 38 (1997) 4463.
[19] Q.-H. Tang, Y. Wang, J. Liang, P. Wang, Q.-H. Zhang, H.-L. Wan, Chemical
Communications (2004) 440.
[20] Q.-H. Tang, Q.-H. Zhang, H.-L. Wu, Y. Wang, Journal of Catalysis 230 (2005) 384.
[21] J. Sebastian, K.M. Jinka, R.V. Jasra, Journal of Catalysis 244 (2006) 208.
[22] M.V. Patil, M.K. Yadav, R.V. Jasra, Journal of Molecular Catalysis A: Chemical 277
(2007) 72.
Fig. 2. Recycling studies of catalysts: Co-Beta (a, and ) and Co-ZSM-5 (b, ▲ and △)
for the epoxidation of styrene. (Alkene, 3 mmol; DMF, 10 g; Catalyst, 0.1 g; Initiator
(TBHP), 0.3 mmol; Time, 5 h; Temperature, 363 K; Flow rate of air, 40 ml/min.)
◇
◆
[23] X.-Y. Quek, Q.-H. Tang, S.-Q. Hu, Y.-H. Yang, Applied Catalysis A 361 (2009) 130.
[24] H.-T. Cui, Y. Zhang, Z.-G. Qiu, L.-F. Zhao, Y.-L. Zhu, Applied Catalysis B: Environmental
101 (2010) 45.
[25] J.-H. Liu, F. Wang, Z.-G. Gu, X.-L. Xu, Catalysis Communications 10 (2009) 868.
[26] G. Xu, Q.-H. Xia, X.-H. Lu, H.-J. Zhan, Journal of Molecular Catalysis A: Chemical
266 (2007) 180.
[27] B. Qi, X.-H. Lu, S.-Y. Fang, J. Lei, Y.-L. Dong, Q.-H. Xia, Journal of Molecular Catalysis
A: Chemical 344 (2011) 44.
[28] Z. Opre, T. Mallat, A. Baiker, Journal of Catalysis 245 (2007) 482.
[29] F. Minisci, C. Gambarotti, M. Pierini, O. Porta, C. Punta, F. Recupero, M. Lucarini, V.
Mugnaini, Tetrahedron Letters 47 (2006) 1421.
4. Conclusions
Transition metal ions (Co2+, Fe3+, Ni2+, Cu2+, Mn2+, Cr3+, and Zn2+
)
exchanged zeolites have been prepared by a simple route. Co-ZSM-5 and
Co-Beta displayed the highest activities for the epoxidation reaction, in
which Co-ZSM-5 and Co-Beta achieved 88.4–92.4 mol% conversion with
the overall selectivity of 94.6–96.6% for the epoxidation of styrene, and
90.6–92.8 mol% conversion with the selectivity of 86.1–88.3% for the ep-
oxidation of α-pinene, respectively. Solvents, oxidants and initiators